簡易檢索 / 詳目顯示

研究生: 張榮展
Jung-Chan Chang
論文名稱: 6.4 MSPS 9位元混合強健式MASH-21連續時間三角積分調變器
6.4 MSPS 9-bit Hybrid Sturdy MASH-21 Continuous-Time Delta-Sigma Modulator
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 陳筱青
Hsiao-Chin Chen
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 71
中文關鍵詞: 連續時間三角積分調變器雜訊移頻
外文關鍵詞: Excess Loop Delay, Continuous-Time DSM
相關次數: 點閱:178下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著影視與音樂產業的發展,對於中高解低度的類比至數位轉換器的需求上升,而三角積分調變器將會是合適的選擇。
    本設計設計一個應用於影音影片的三角積分調變器,離散時間三角積分調變器將受到取樣頻率的限制,因此本設計使用連續時間三角積分調變器來實現寬信號頻帶之應用。架構上以Sturdy-MASH為基礎進行改良來消除第一級量化器產生之量化雜訊,在系統中第二級積分器後加入了低通濾波器以及在第一級量化器後加入D flip-flop來解決excess loop delay的問題。
    本篇設計所設計之晶片採用TSMC 90-nm CMOS製程。供應電壓為1.2V,晶片總功率消耗23.9 mW,總面積為2.069 * 1.425mm^2。系統頻寬為6.4MHz,取樣頻率為640 MHz,故超取樣率為50,SNDR達64.6 dB,解析度為10.43位元。


    As the film and music industry develops, the demand for analog-to-digital converters (ADCs) with medium-to-high resolution has increased. Delta-sigma modulator (DSM) is a suitable choice.
    This paper designs a DSM for video and audio applications. Since the discrete-time DSM is limited by the sampling frequency, a continuous-time DSM is used in this paper to achieve a wide signal bandwidth. The Sturdy-MASH structure is improved to achieve third-to-fourth-order noise shaping. A low-pass filter and a D flip-flop are also added to solve the problem of excess loop delay (ELD).
    The designed chip in this paper uses TSMC 90-nm CMOS process with a supply voltage of 1.2V, a total power consumption of 23.9mW, and a total area of 2.069 * 1.425 mm^2. The system bandwidth is 6.4MHz, the sampling frequency is 640MHz, and the oversampling ratio is 50. The SNDR reaches 60.5dB, and the resolution is 9.76 bits.

    封面 1 摘要 i ABSTRACT ii 致謝 iii CONTENTS iv LIST of TABLES vii LIST of FIGURES viii Chapter 1 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 3 Introduction of Delta-Sigma Modulator[2] 3 2.1 Nyquist Sampling and Oversampling 3 2.2 Nyquist sampling theorem 4 2.3 Quantization Noise 5 2.4 Oversampling 7 2.5 Noise shaping 9 2.6 First-Order Single Loop Delta-Sigma Modulator 10 2.7 Second-Order and Higher-Order Single Loop Delta-Sigma Modulator 11 2.8 MASH Delta-Sigma Modulator 13 2.9 Sturdy MASH Delta-Sigma Modulator 15 Chapter 3 17 System Architecture Analysis and Simulation 17 3.1 Hybrid Sturdy MASH-21 Delta-Sigma Modulator 17 3.1.1 Continuous-Time HSMASH-21 Delta-Sigma Modulator 18 3.2 System Behavior Simulations 22 3.2.1 RC Integrator 24 3.2.2 Excess Loop Delay 26 3.2.3 Integrator Noise Consideration 28 Chapter 4 33 Chip Implementation and Discussion 33 4.1 FFMC-PZ Topology Op-amp 33 4.2 Comparator 41 4.3 Clock Driver 44 4.4 The HSMASH-21 Circuit 45 4.5 Pre-Simulations of the HSMASH-21 System 55 4.6 Post-Simulations of the HSMASH-21 System 58 4.7 Performance Comparison 63 4.8 Discussion 65 4.8.1 Layout Optimization 65 4.8.2 Improving the SNR Performance 66 Chapter 5 68 Conclusions and Future Works 68 5.1 Conclusions 68 5.2 Future Works 68 5.2.1 Calculation of Load Effect 68 5.2.2 Multi-bit Quantizer 69 References 70

    [1] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta A/D Conversion. Berlin: Springer, 2006.
    [2] S. Paven, R. Schreier, and G. C. Temes, Understanding delta-sigma data converters. John Wiley & Sons, 2017.
    [3] N. Maghari, S. Kwon and U. Moon, “74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35dB Open-Loop Opamp Gain,”in IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2212-2221, Aug. 2009.
    [4] C.-Y. Yao, “Analysis of a New Hybrid Sturdy MASH-11 Delta-Sigma Modulator,” IEEE 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), Hubei, Yi-chang, China, Sept. 2019, pp. 362-365.
    [5] D. Yoon, S. Ho and H. Lee, “A Continuous-Time Sturdy-MASH Delta-Sigma Modulator in 28 nm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2880-2890, Dec. 2015.
    [6] D. Y. Yoon, H.-S. Lee, and J. Gealow, “Power-efficient amplifier frequency compensation for continuous-time delta-sigma modulators,”in IEEE 56th Int. Midwest Symp. Circuits. Syst. (MWSCAS), 2013, pp. 562-565.
    [7] M. Bolatkale, L. J. Breems, R. Rutten, and K. A. A. Makinwa, “A 4 GHz continuous-time ADC with 70dB DR and 74 dBFS THD in 125 MHz BW,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2857-2868, Dec. 2011.
    [8] V. Srinivasan, V. Wang, P. Satarzadeh, B. Haroun, and M. Corsi, “A 20mW 61 dB SNDR 60 MHz BW) 1b 3rd-order continuous-time delta-sigma modulator clocked at 6 GHZ in 45 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2012, pp. 158–160.
    [9] S. Ho, C.-L. Lo, J. Ru, and J. Zhao, “A 23 mW, 73 dB dynamic range, 80MHz BW continuous-time delta-sigma modulator in 20 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 908–919, Apr. 2015.
    [10] Y. Dong, W. Yang, R. Schreier, A. Sheikholeslami, and S. Korrapati, “A continuous-time 0-3 MASH ADC achieving 88 dB DR with 53 MHz BW in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2868-2877, Dec. 2014.
    [11] K. Reddy, S. Dey, S. Rao, B. Young, P. Prabha, and P. Hanumolu, “A 54mW 1.2 GS/s 71.5 dB SNDR 50 MHz BW VCO-based CT delta-sigma ADC using dual phase/frequency feedback in 65 nm CMOS,” in Proc. Symp. VLSI Circuits (VLSI Circuits), Jun. 2015, pp. C256-C257.
    [12] M. Jang, C. Lee, and Y. Chae, “Analysis and design of low-power continuous-time delta-sigma modulator using negative-R assisted integrator,” IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 277-287, Jan. 2019.
    [13] H. Lee, C. Lee, J.-Y. Lee, Y.-K. Choi, and Y. Chae, “A 0.033-〖mm〗^2 21.5-aF resolution continuous-time delta-sigma capacitance-to-digital converter with parasitic capacitance immunity up to 480 pF,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2021, pp. 1-3.
    [14] J. Kwon, C. Lee, Y. Chae, and B. Murmann, “Design considerations for external compensation approaches to OLED display degradation,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1-5.
    [15] M. Jang, C. Lee, and Y. Chae, “A 134-μW 99.4-dB SNDR audio continuous-time delta-sigma modulator with chopped negative-R and tri-level FIR-DAC,” IEEE J. Solid-State Circuits, vol. 56, no. 6, pp. 1761-1771, Jun. 2021.
    [16] X. Tang et al., “An energy-efficient time-domain incremental zoom capacitance-to-digital converter,” IEEE J. Solid-State Circuits, vol. 55, no. 11, pp. 3064-3075, Nov. 2020.

    QR CODE