簡易檢索 / 詳目顯示

研究生: 林家弘
Chia-Hung Lin
論文名稱: 聲頻應用等效14.5位元混合強健式MASH-21前饋三角積分調變器
A 14.5-bit Hybrid Sturdy MASH-21 Delta-Sigma Modulator with Feedforward Path for Audio Applications
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 彭盛裕
Sheng-Yu Peng
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 68
中文關鍵詞: 三角積分調變器Class-AB op amp切換式電容積分器雜訊移頻
外文關鍵詞: Delta-Sigma Modulator, Class-AB op amp, switched capacitor integrator, noise shaping
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三角積分調變器(Delta-Sigma Modulators)因擁有高解析度而廣為人知,常被應用於低速、高解析度的資料轉換應用中,本篇論文採用三角積分調變器實現在聲頻應用中的類比數位調變器。在本論文前段,會說明如何根據系統應用決定規格、接著建立系統模型、推導系統整體轉移函式,最後選取適合的子電路來完成系統。
    本論文為使用一個三階三角積分調變器,改良Sturdy-MASH架構以消除第一級量化雜訊。並加入前饋路徑,消除訊號分量對第一級積分器的輸出影響,藉此來提升整體系統的解析度。
    本論文提出應用於聲頻系統的三角積分類比至數位轉換器。使用TSMC 0.18μm製成、操作在1.8 V電壓、訊號頻寬為24 KHz、取樣頻率為4.608 MHz。晶片總功率消耗989 μW ,總面積為3.028×1.568 mm^2,訊號對雜訊及失真的比值(SNDR)為 89.91 dB,相當於 14.64位元。


    Delta-Sigma Modulators (DSMs) are well-known for their capabilities of offering high resolution digital signals. It is usually used in low-speed, high-resolution data-conversion applications. This thesis employs the delta-sigma modulator to realize an analog to digital converter for audio applications.
    This thesis explains how we determine the specifications according to the applications in the beginning. Then, it introduces the way of building the system model, including the derivation of the system transfer function and the selection of appropriate sub-circuits to complete the design. This work uses a two-stage third-order hybrid sturdy MASH delta-sigma modulator to eliminate the first-stage quantization noise. According to the analysis and design, the signal bandwidth is set to be 24 kHz and the sampling frequency is chosen to be 4.608 MHz. In addition, a feed-forward path is included to eliminate the signal component at the output of the first integrator, thereby reducing the distortion caused by the first op- amp and improving the SNDR.
    This work employs TSMC 0.18μm CMOS process to fabricate the DSM chips. The total power consumption of the chip is 989 μW, and the total area is 3.028×1.568 mm^2. The achieved SNDR is 89.91 dB, which is equivalent to an ENOB of 14.64 bits.

    致謝 中文摘要 ABSTRACT CONTENTS LIST of FIGURES LIST of TABLES Chapter 1 Introduction 1.1 Motivation 1.2 Thesis organization Chapter 2 Oversampling of Delta-Sigma Modulator[1] 2.1 Nyquist Sampling and Oversampling 2.2 Nyquist sampling theorem 2.3 Quantization Noise 2.4 Oversampling 2.5 Noise shaping 2.6 First-order Delta Sigma Modulator 2.7 MASH & SMASH Architecture Chapter 3 System-Level Design Considerations 3.1 Design Flow 3.2 Hybrid Sturdy MASH-21 Architecture 3.3 System Behavior Simulations 3.3.1 Switched-Capacitor Integrator 3.3.2 Op-amp Unit Gain Bandwidth and Slew Rate[9] 3.4 Integrator Noise Analysis Chapter 4 Chip Implementation 4.1 Fully Differential Op-amp 4.2 Comparator 4.3 Bootstrap Circuit 4.4 Non-overlapping Clock Generator 4.5 D Flip-Flop 4.6 Periodic Steady-State (PSS) Simulation 4.7 The HSMASH-21 Circuit 4.8 Pre-Simulations of the HSMASH-21 System 4.9 Post-Simulations of the HSMASH-21 System Chapter 5 Measurement Result 5.1 Measurement environment 5.2 ADC Driver 5.3 Chip measurement result 5.4 Performance Comparison Chapter 6 Conclusions and Future works 6.1 Conclusions 6.2 Future works References

    [1]S. Pavan, R. Schreier, and G. C. Temes, Understanding delta-sigma data converters. John Wiley & Sons, 2017.
    [2]N. Maghari, S. Kwon, and U.-K. Moon, "74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35 dB Open-Loop Opamp Gain," IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2212-2221, 2009, doi: 10.1109/jssc.2009.2022302.
    [3]A. Gharbiya and D. A. Johns, "On the implementation of input-feedforward delta-sigma modulators," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 6, pp. 453-457, 2006, doi: 10.1109/tcsii.2006.873829.
    [4]L. Liu, D. Li, L. Chen, Y. Ye, and Z. Wang, "A 1-V 15-Bit Audio ΔΣ-ADC in 0.18 μm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 5, pp. 915-925, 2012, doi: 10.1109/tcsi.2012.2188949.
    [5]E. Lopez-Morillo, R. G. Carvajal, H. Elgimili, J. Ramirez-Angulo, A. Lopez-Martin, and E. Rodriguez-Villegas, "A Very Low-Power Class AB/AB Op-amp based Sigma-Delta Modulator for Biomedical Applications," 2006: IEEE, doi: 10.1109/mwscas.2006.382311. [Online]. Available: https://dx.doi.org/10.1109/MWSCAS.2006.382311
    [6]P. Malcovati, F. Maloberti, and M. Terzani, "An high-swing, 1.8 V, push-pull opamp for sigma-delta modulators," IEEE, doi: 10.1109/icecs.1998.813265. [Online]. Available: https://dx.doi.org/10.1109/ICECS.1998.813265
    [7]C. -Y. Yao, "Analysis of a New Hybrid Sturdy MASH-11 Delta-Sigma Modulator," 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), 2019, pp. 362-365, doi: 10.1109/IGBSG.2019.8886257.
    [8]K. L. Lee and R. G. Mayer, "Low-distortion switched-capacitor filter design techniques," IEEE Journal of Solid-State Circuits, vol. 20, no. 6, pp. 1103-1113, 1985, doi: 10.1109/jssc.1985.1052447.
    [9]S.Brigati,(2016). The SD Toolbox for Matlab
    [10]J. Ramirez-Angulo, R. G. Carvajal, J. A. Galan, and A. Lopez-Martin, "A free but efficient low-voltage class-AB two-stage operational amplifier," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 568-571, 2006, doi: 10.1109/tcsii.2006.875320.
    [11]B. Razavi, Design of analog CMOS integrated circuits., 2005.
    [12]B. Razavi, "The StrongARM Latch [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12-17, 2015, doi: 10.1109/mssc.2015.2418155.
    [13]D. Aksin, M. A. Al-Shyoukh, and F. Maloberti, "A bootstrapped switch for precise sampling of inputs with signal range beyond supply voltage," IEEE, doi: 10.1109/cicc.2005.1568775. [Online]. Available: https://dx.doi.org/10.1109/CICC.2005.1568775
    [14]S. Zheng, K. Sheng, J. Chen, W. Gai, and J. Feng, "A clock-feedthrough compensation technique for bootstrapped switch," 2017: IEEE, doi: 10.1109/edssc.2017.8126495. [Online]. Available: https://dx.doi.org/10.1109/EDSSC.2017.8126495
    [15]Y.-S. Kwak, K.-I. Cho, H.-J. Kim, S.-H. Lee, and G.-C. Ahn, "A 72.9-dB SNDR 20-MHz BW 2-2 Discrete-Time Resolution-Enhanced Sturdy MASH Delta–Sigma Modulator Using Source-Follower-Based Integrators," IEEE Journal of Solid-State Circuits, vol. 53, no. 10, pp. 2772-2782, 2018, doi: 10.1109/jssc.2018.2859401.
    [16]S. -H. Liao and J. -T. Wu, "A 1-V 175- μW 94.6-dB SNDR 25-kHz Bandwidth Delta-Sigma Modulator Using segmented Integration Techniques," in IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2523-2531, Sept. 2019.
    [17]H. Park, K. Nam, D. K. Su, K. Vleugels, and B. A. Wooley, "A 0.7-V 870-μ W Digital-Audio CMOS Sigma-Delta Modulator," IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1078-1088, 2009, doi: 10.1109/jssc.2009.2014708.
    [18]J. S. Cho et al., "A 1.2-V 108.9-dB A-Weighted DR 101.4-dB SNDR Audio ΣΔ ADC Using a Multi-Rate Noise-Shaping Quantizer," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1315-1319, 2018, doi: 10.1109/tcsii.2018.2853189.
    [19]J. -H. Han, K. -I. Cho, H. -J. Kim, J. -H. Boo, J. S. Kim and G. -C. Ahn, "A 96dB Dynamic Range 2kHz Bandwidth 2nd Order Delta-Sigma Modulator Using Modified Feed-Forward Architecture With Delayed Feedback," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1645-1649, May 2021

    無法下載圖示 全文公開日期 2025/01/14 (校內網路)
    全文公開日期 2028/01/14 (校外網路)
    全文公開日期 2028/01/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE