簡易檢索 / 詳目顯示

研究生: 何信澆
Hsin-chiao Ho
論文名稱: 超音波結合不同粒徑微氣泡對比劑於經皮穿透之藥物滲透效益評
Microbubble-Size Dependence of Ultrasound-Induced Transdermal High Molecular Weight Drug Delivery
指導教授: 廖愛禾
Ai-ho Liao
口試委員: 王智弘
Chih-hung Wang
王士豪
Shyh-hau Wang
沈哲州
Che-chou Shen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 經皮穿透超音波不同粒徑微氣泡對比劑四異棕櫚酸酯維生素C黑色素
外文關鍵詞: different size Microbubble, Ultrasound, Transdermal delivery, Ascorbyl Tetraisopalmitate (VC-IP), Melanin
相關次數: 點閱:285下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於大分子的藥物而言,經皮穿透常受限於表皮層內的角質層所形成之屏障,導致藥物穿透不易。根據文獻得知,不同粒徑之微氣泡對比劑與超音波作用後在於開啓血腦障蔽、基因治療皆有不同效益;而本研究即針對不同粒徑微氣泡對比劑用於加強大分子經皮穿透之不同效果進行驗證。

    實驗參數分為: (1)控制組(C)、(2)單純施打超音波組(U)、(3)添加1.4 μm微氣泡對比劑組(U+1.4 μm)、(4)添加2.1 μm微氣泡對比劑組(U+2.1 μm)及(5)添加3.5 μm微氣泡對比劑組(U+3.5 μm)。根據實驗結果可得知,U+3.5 μm組在3 W/cm2能量作用下於仿體及豬皮穿透深度方面相較於1.4 μm組及2.1μm組分別增加了34%及14%; 37%及19%於經皮穿透濃度分析中,U+3.5 μm組穿透濃度相較1.4 μm組及2.1 μm組分別增加了23%及10%;於美白效果方面進行四週動物實驗(C57BL/6J老鼠),第一週皮膚即有明顯亮度提升的效果(增加28%),於第二週持續增加(34%),治療於第三週後亮度雖趨於平緩但也高達(45%),而添加3.5 μm微氣泡對比劑組相較於添加其他粒徑微氣泡對比劑組別在治療第一周時即有相當顯著的皮膚亮度,當治療時間一樣時,添加3.5 μm組相較於其他組別能夠達到顯著的美白成效。

    由此實驗結果可以得知,超音波結合不同粒徑微氣泡對比劑之治療可以不同程度的加強穿透濃度及四異棕櫚酸酯維生素C之藥物釋放,進而使四異棕櫚酸酯維生素C在對老鼠皮膚沒有傷害的情形下更有效地到達基底層抑制黑色素生成。


    The application of transdermal delivery to a wider range of high molecular weight drugs is limited due to the significant barrier to penetration across the skin which is associated with the stratum corneum layer of the epidermis. In previous study, both in opening Blood-Brain-Barrier and gene transfection that different size microbubble (MB) caused different effects. In this study, the different effects of the different size MBs and as the high molecular weight drugs delivery enhancers for transdermal delivery were firstly demonstrated. The effects of different size MBs and Ascorbyl Tetraisopalmitate (VC-IP) on skin transdermal efficiency were proved in vitro or for in vivo experiments. Experiment parameters were randomly divided into five groups: (1) only penetrating VC-IP (C); (2) ultrasound combines with penetrating VC-IP (U); (3) ultrasound combines with 1.4 μm MBs contrast agent and penetrating VC-IP (U+1.4 μm); (4) ultrasound combines with 2.1 μm MBs and penetrating VC-IP(U+2.1 μm); (5)ultrasound combines 3.5 μm contrast agent and penetrating VC-IP(U+3.5 μm). According to the results, at 3 W/cm2 energy the penetration depth of agarose phantom and pig skin of U+3.5 μm group compared with U+1.4 μm and U+2.1 μm group increase 34% and 14 %; 37% and 19%, respectively. In skin permeation of VC-IP, U+3.5 μm group has greater VC-IP concentration than U+1.4 μm and U+2.1 μm group is 23% and 10%, respectively. The whitening effect (luminosity index (L*)) of mice skin in U+3.5 μm group has significantly increase 28% in one week, 34% in two weeks and tends towards stability in three weeks (45%) in C57BL/6J mice over a 4-week experimental period.

    Our results investigated that the treatments of ultrasound combined with different size MBs can different degree increase skin permeability, enhance VC-IP delivery to inhibit melanogenesis and not damage the skin in mice.

    目錄 中文摘要 ABSTRACT 致謝 圖表索引 第一章 緒論 1.1 超音波原理簡介 1.1.1 機械效應 1.1.2 熱效應 1.1.3 穴蝕效應 1.1.3.1 穩態穴蝕效應 1.1.3.2 慣性穴蝕效應 1.2 超音波微氣泡對比劑簡介及應用 1.2.1不同粒徑大小的微氣泡結合超音波之研究發展 1.3 皮膚生理學 1.3.1 表皮層 1.3.2 真皮 1.3.3 皮下組織 1.4 藥物經皮吸收機制 1.5 藥物傳輸方式 1.5.1 化學滲透促進劑 1.5.2 離子電滲療法 1.5.3 電穿孔 1.5.4 超音波 1.5.5 微針 1.6 黑色素形成機制 1.7 維他命C與四異棕櫚酸酯維他命C簡介 1.7.1 四異棕櫚酸酯維他命C 1.8 實驗動機與目的 第二章 實驗材料與方法 2.1 白蛋白微氣泡對比劑製作 2.1.1 白蛋白微氣泡對比劑粒徑及濃度分析 2.1.1.1 白蛋白微氣泡對比劑濃度分析 2.1.1.2 白蛋白微氣泡對比劑粒徑分析 2.2 染劑於仿體之穿透深度量測 2.2.1 影像處理流程 2.2.2 二值化及閥值運算 2.2.3 邊緣偵測 2.3 染劑於豬皮之穿透深度評估 2.4 四異棕櫚酸酯維生素C經皮穿透之分光光度計定量分析 2.4.1 分光光度計 2.5 超音波結合不同粒徑之微氣泡對比劑於小鼠皮膚美白實驗 2.5.1 Lab色度檢測 第三章 實驗結果 3.1 白蛋白微氣泡對比劑之濃度與粒徑分析結果 3.2 不同超音波能量結合不同粒徑微氣泡於染劑穿透仿體之參數評估 3.3 不同超音波能量結合不同粒徑微氣泡於染劑穿透豬皮之參數評估 3.4 四異棕櫚酸酯維生素C經皮穿透之濃度分析 3.5 超音波結合不同粒徑微氣泡於小鼠皮膚美白實驗之亮度評估 3.6 小動物皮膚組織切片黑色素之分析 第四章 討論 第五章 結論 參考文獻

    [1] Tsai T. H., Jerng J. S., and Yang P. C., “Clinical Applications of Transthoracic Ultrasound in Chest Medicine,” Journal of Medical Ultrasound, Vol. 16, No. 1, pp. 7-25 (2008)
    [2] Tseng L. H., “Ultrasound in Urogynecology: An Update on Clinical Application,” Journal of Medical Ultrasound, Vol. 15, No. 1, pp. 45-57, 2008
    [3] Ahmeda H. U., Moore C., and Embertona M. et al., “Minimally-invasive technologies in uro-oncology: the role of cryotherapy, HIFU and photodynamic therapy in whole gland and focal therapy of localised prostate cancer,” Surgical Oncology Vol. 18, No. 3, pp. 219-232 (2009)
    [4] Tachibana K., and Tachibana S., “Transdermal delivery of insulin by ultrasonic vibration,” Journal of Pharmacy and Pharmacology, Vol. 43, No. 4, pp. 270-1 , 1991.
    [5] Levy D., Kost J., Meshulam Y., and Langer R., “Effectof ultrasound on transdermal drug delivery to rats and guinea pigs,” The Journal of Clinical Investigation, Vol.83, No.2, pp.2074-2078, 1989.
    [6] TezelA, SensA, TuchschererJ, and Mitragotri S., “Synergistic effect of low frequency ultrasound and surfactantson skin permeability,” Journal of Pharmaceutical Sciences, Vol.91, No.1, pp.91–100, 2002.
    [7] 陳思嘉,「靶向超音波於血栓溶解之研究」,碩士論文,國立台灣大學,台北 (2009)
    [8] Christensen D. A., Ultrasonic Bioinstrumentations, John & Sons,1988.
    [9] 王嘉弘,「高效率超音波驅動電路設計在生醫應用之研究」,碩士論文,國立暨南國際大學,南投 (2006)
    [10] Victor M., Bozena B., and Michniak-Kohn., Ultrasound-based Technology for Skin Barrier Permeabilization, Handbook of Non-Invasive Drug Delivery Systems: Science and Technology, UK, pp. 119-131, 2010.
    [11] Lu S. C., Yeh C. K.,「包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用」.碩士論文,國立清華大學,新竹 (2008)
    [12] Lauterborn W., Kurz T., Geisler R., Schanz D., amd Lindau O., ”Acoustic cavitation, bubble dynamics and sonoluminescence.” Ultrasonics sonochemistry, vol. 14, pp. 484-91, 2007.
    [13] Hernot S, and Klibanov A. L. “Microbubbles in ultrasound-triggered drug and gene delivery.” Adv Drug Deliv Rev., vol. 60, pp. 1153-66, 2008.
    [14] McDannold N., Vykhodtseva N., and Hynynen K., “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound Med Biol, vol. 34, pp. 834-40, 2008.
    [15] Morgan K. E., Allen J. S., Dayton P. A., Chomas J. E., Klibanov A. L., and Ferrara K. W., “Expermental and theoretical evaluation of microbubble behavior:effect of transmitted phase and bubble size,” Ieee transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 47, pp. 1494-1509,2000.
    [16] Lentacker I., De Smedt S. C., and Sanders N. N., “Drug loaded microbubble design for ultrasound triggered delievery,” Soft Matter, vol. 5, pp. 2161-2170, 2009.
    [17] Apfel R. E. and Holland C. K., “Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound,” Ultrasound Med Biol, vol. 17, pp. 179-85, 1991.
    [18] Ogawa K., Tachibana K., Uchida T., Tai T., Yamashita N., and Tsujita N., et al. “High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound.” Med Electron Microsc, vol. 34, pp. 249-53, 2001.
    [19] Lawrie A., Brisken A. F., Francis S. E., Tayler D. I., Chamberlain J., and Crossman D. C., et al. “Ultrasound Enhances Reporter Gene Expression After Transfection of Vascular Cells In Vitro.” Circulation, vol. 99, pp. 2617-20, 1999.
    [20] Ward M., Wu J., and Chiu J-F. “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents.” The Journal of the Acoustical Society of America, vol. 105, pp. 2951-7, 1999.
    [21] Wu J., Ross J. P., and Chiu J. F., “Reparable sonoporation generated by microstreaming.” The Journal of the Acoustical Society of America, vol. 111, pp. 1460-4, 2002.
    [22] Eleanor Stride, “Physical Principles of Microbubbles for Ultrasound Imaging and Therapy,” Cerebrovasc Diseasses, Vol. 27, No. 2, pp. 1-13 , 2009.
    [23] Gong C., and Douglas P. H., “Ultrasound Induced Cavitation and Sonochemical Yields,” Journal of the Acoustical Society of America, Vol. 104, No. 5, pp. 2675-2682 , 1998.
    [24] Kang S. T., Yeh C. K., “Ultrasound Microbubble Contrast Agents for Diagnostic and Therapeutic Applications: Current Status and Future Design,” Chang Gung Medical Journal, Vol. 35, No. 2, pp. 125-139 , 2012.
    [25] Frinking P. J., Bouakaz A., Kirkhorn J., Ten Cate F. J., and de Jong N., “Ultraound contrast imaging: current and new potential methods,” Ultrasound Med Biol, vol. 26, pp. 965-75, 2000.
    [26] Tinkov S., Bekeredjian R., and Winter G. et al., “Microbubbles as Ultrasound Triggered Drug Carriers,” Journal of Pharmaceutical Sciences, Vol. 98, No. 6, pp. 1935-1961, 2009.
    [27] Lindner J. R., “Microbubbles in medical imaging: current applications and future directions,” Nature Reviews Drug Discovery, Vol. 3, No. 6, pp. 527-533, 2004.
    [28] Edward L., “The role of contrast-enhanced ultrasound in the characterization of focal liver lesions,” European Radiology , Vol. 11, No. 3, pp. E27-E34, 2001.
    [29] Geers B., Dewitte H., and De Smedt S. C. et al., “Crucial factors and emerging concepts in ultrasound-triggered drug delivery,” Journal of Controlled Release, Vol. 164, No. 3, pp. 248-255, 2012.
    [30] Caskey C. F., Kruse D. E., Dayton P. A., Kitano T. K., and Ferrara K. W. “Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns.” Applied Physics Letters, vol. 88, pp. 033902, 2006.
    [31] Sassaroli E., and Hynynen K., “Cavitation Threshold of Microbubbles in Gel Tunnels by Focused Ultrasound.” Ultrasound in Medicine & Biology, vol. 33, pp. 1651-60, 2007.
    [32] Sassaroli E., and Hynynen K., “Resonance frequency of microbubbles in small blood vessels: a numerical study.” Phys Med Biol, vol. 50, pp. 5293-305, 2005.
    [33] Tung Y. S., Vlachos F., Feshitan J. A., Borden M. A., and Konofagou E. E., “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice.” J Acoust Soc Am, vol. 130, pp. 3059-67, 2011.
    [34] Qin S., and Ferrara K. W., “The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels.” Ultrasound Med Biol, vol. 33, pp. 1140-8, 2007.
    [35] Choi J. J., Feshitan J. A., Baseri B., Shougang W., Yao-Sheng T, and Borden M. A., et al. “Microbubble-Size Dependence of Focused Ultrasound-Induced Blood Brain Barrier Opening in Mice In Vivo.” Biomedical Engineering, IEEE Transactions on, vol. 57, pp. 145-54, 2010.
    [36] 王鴻偉,「用三倍頻發射相位法於對比劑諧波影像」,碩士論文,國立台灣科技大學,台北 (2008)
    [37] 王裕鈞 ,「用三倍頻發射相位法於組織諧波信號分析」,碩士論文,國立台灣科技大學,台北 (2007)
    [38] 邱奕元,「使用啾聲信號之三倍頻發射相位法於諧波影像偵測」,碩士論文,國立台灣科技大學,台北 (2009)
    [39] 李承翰,「高頻超音波血流成像」,碩士論文,國立台灣大學,台北 (2005)
    [40] Borrelli M. J., O’Brien Jr W. D., Hamilton E., Oelze M. L., Wu J., and Bernock L. J., et al., “Influences of Microbubble Diameter and Ultrasonic Parameters on In Vitro Sonothrombolysis Efficacy.” Journal of Vascular and Interventional Radiology, vol. 23, pp. 1677-84, 2012.
    [41] Tung Y. S., Choi J. J., Baseri B., and Konofagou E. E., “Identifying the Inertial Cavitation Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles.” Ultrasound in Medicine & Biology, vol. 36, pp. 840-52, 2010.
    [42] Borrelli M. J., O'Brien W. D., Jr., Bernock L. J., Williams H. R., Hamilton E., and Wu J., et al., “Production of uniformly sized serum albumin and dextrose microbubbles.” Ultrasonics sonochemistry, vol. 19, pp. 198-208, 2012.
    [43] Browning R. J., Mulvana H., Tang M. X., Hajnal J. V., Wells D. J., and Eckersley R. J., “Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo.” Ultrasound Med Biol, vol. 38, pp. 1067-77, 2012.
    [44] Monteiro-Riviere, N.A., “Comparative anatomy, physiology, and biochemistry of mammalian skin, in D.W. Hobson (ed.)”, Dermal and Ocular Toxicology: Fundamentals and Methods, Boca Raton, FL: CRC Press, pp. 3–71, 1991.
    [45] Monteiro-Riviere, N.A., Bristol, D.G., Manning, T.O., Rogers, R.A., and Riviere, J.E., “Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species”, J. Invest. Dermatol, vol. 95, pp. 582–586, 1990.
    [46] Klaus Peter Wilhelm, Hongbo Zhai, and Howard I. Maibach (2010), Dermatotoxicology (7th ed.), CRC Press.
    [47] Venus M., Waterman J., and McNab I., “Basic physiology of the skin,” Surgery. Vol. 28, No. 10, pp. 469-472, 2010.
    [48] 林銘楷,「人體皮脂對藥物角質層滲透性之研究」,碩士論文,國立成功大學,台南 (2004)
    [49] 鄭嘉雯,「含乙基維生素C微乳液之特性」,碩士論文,大同大學,台北 (2011)
    [50] Pathan I. B., and Setty C. M., “Chemical Penetration Enhancers for Transdermal Drug Delivery Systems,” Tropical Journal of Pharmaceutical Research, Vol. 8, No. 2, pp. 173-179, 2009.
    [51] Tin Wui Wong, “Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery,” Journal of Controlled Release, pp. 13, 2014.
    [52] Alexander A., Dwivedi S., and Ajazuddin. , “Approaches for breaking the barriers of drug permeation through transdermal,” Journal of Controlled Release, Vol. 164, No. 1, pp. 26-40, 2012.
    [53] Barry B. W., “Novel mechanisms and devices to enable successful transdermal drug delivery,” European Journal of Pharmaceutical Sciences, Vol. 14, No. 2, pp. 101-114, 2001.
    [54] Aharon Azagury, Eliz Amar-Lewis, Ella Mannb, Riki Goldbart, Tamar Traitel, Raz Jelinek, Mordechai Hallak, Joseph Kost, “A novel approach for noninvasive drug delivery and sensing through the amniotic sac.” Journal of Controlled Release, Vol. 183, pp. 105-113, 2014.
    [55] Aarti Naik, Yogeshvar N. Kalia and Richard H., ”Transdermal drug delivery:overcoming the skin’s barrier function,” PSTT, Vol. 3, No. 9, 2000.
    [56] Jadoul A., Bouwstra J., and Pre’at V., “Effects of iontophoresis and electroporation on the stratum corneum Review of the biophysical studies,” Advanced Drug Delivery Reviews, Vol. 35, No. 1、4, pp. 89-105, 1999.
    [57] Silva S. M., Hu L., and Sousa J. J. et al., “A combination of nonionic surfactants and iontophoresis to enhance the transdermal drug delivery of ondansetron HCl and diltiazem HCl,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 80, No. 3, pp. 663-673, 2012.
    [58] Qingfang Xu, Rajan P., Kochambilli, Yang Song, Jinsong Hao,William I. Higuchi, Kevin Li S., “Effects of alternating current frequency and permeation enhancers upon human epidermal membrane,” Journal of Pharmaceutics, vol. 372, pp. 24-32, 2009.
    [59] Mori K., Hasegawa T., and Sato S. et al., “Effect of electric field on the enhanced skin permeation of drugs by electroporation,” Journal of Controlled Release. Vol. 90, No. 24, pp. 171-179, 2003.
    [60] Smith N. B., “Perspectives on transdermal ultrasound mediated,” International Journal of Nanomedicine, Vol.2, No.4, pp.585-594, 2007.
    [61] Anubhav Arora, Mark R. Prausnitz, Samir Mitragotri, “Micro-scale devices for transdermal drug delivery,” International Journal of Pharmaceutics, vol. 364, pp. 227-236, 2008.
    [62] 吳俊志,「維他命 C 磷酸鎂鹽水膠面膜的製造與穿透性試驗」,碩士論文,朝陽科技大學,台中 (2005)
    [63] Pastila R., “Effect of long-wave UV radiation on mouse melanoma: an in vitro and in vivo study”, Stuk, Finland, 2006.
    [64] Yoshida Y., Hachiya A., and Sriwiriyanont P. et al., “Functional analysis of keratinocytes in skin color using a human skin substitute model composed of cells derived from different skin pigmentation types,” The FASEB Journal, Vol. 21, No. 11, pp. 2829-2839, 2007.
    [65] Lai-Cheong J. E., McGrath J. A., “Structure and function of skin, hair and nails,” Medicine, Vol. 37, No. 5, pp. 223-226, 2009.
    [66] Chan Y.Y., Kim K.H., and Cheah S.H., “Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells,” Journal of Ethnopharmacology, Vol. 137, No. 3, pp. 1183-1189,2011.
    [67] Abdel-Malek Z., Swope V. B., and Suzuki I., “Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 92, No. 5, pp. 1789-1793, 1995.
    [68] 蕭伊妙,「維他命C醣苷和熊果素對於B16色素素瘤細胞抑制色素生成之研究」,碩士論文,國立清華大學,新竹 (2007)
    [69] Slominski A., Tobin D. J., and Shibahara S., “Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation,” Physiological Reviews, Vol. 84, No. 4, pp. 1155-1228, 2004.
    [70] Chang, L. C., “Application of cosmetics Inspecting.”, Fayfar Publishing Co.,Ltd, 1998.
    [71] Chan Y. Y., Kim K. H., and Cheah S. H., “Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells,” Journal of Ethnopharmacology. Vol. 137, No. 3, pp. 1183-1188, 2011.
    [72] 呂佩嘉、黃蕙君、張聰民,「生薑醇抑制黑色素生成之研究」,弘光學報,弘光科技大學,台中 (2009)
    [73] 周玉青、黃蕙君、張聰民,「莨菪素抑制酪胺酸酶功效之研究」,弘光學報,弘光科技大學,台中 (2009)
    [74] 王阿靜,「化妝品美白成分之HPLC分析方法開發」,碩士論文,朝陽科技大學,台中 (2004)
    [75] Yasunobu Ochiai, Satoko Kaburagi, Kei Obayashi, Nobuyuki Ujiie, Satoru Hashimoto, Yuri Okano, Hitoshi Masaki, Masamitsu Ichihashi, Hiromu, Sakurai, “A new lipophilic pro-vitamin C, tetra-isopalmitoyl ascorbic acid (VC-IP), prevents UV-induced skin pigmentation through its anti-oxidative properties,” Journal of Dermatological Science, vol. 44, pp. 37-44, 2006.
    [76] 楊粉榮、文洪杰、鍾勤,「幾種粒徑量測定方法比較」,Physics Examination and Testing,(2005)
    [77] https://www.beckmancoulter.com/wsrportal/wsr/industrial/products/coulter-counter-analyzers/multisizer-3/index.htm. 2013
    [78] 王子瑜、曹恒光,,「漫談布朗運動」,物理雙月刊,(2005)
    [79] Nanoparticle Analyzer SZ-100S儀器使用操作手冊.
    [80] 許羽均,「辨識肌肉纖維化之超音波影像紋理分析」,碩士論文,國立海洋大學,高雄 (2010)
    [81] 陳守信,「即時影像處理於自走車避障之設計與實現」,碩士論文,逢甲大學,台中 (2007)
    [82] Kim J., Jang J. H., and Lee J. H. et al., “Enhanced Topical Delivery of SmallHydrophilic or Lipophilic Active Agents and Epidermal Growth Factor by Fractional Radiofrequency Microporation,” Pharmaceutical Research, Vol. 29, No. 7, pp. 2017-2029, 2012.
    [83] Ishii H., Fujino K., and Todo H. et al., “Evaluation of the skin blanching of topically applied steroids using a chroma meter in animals,” Experimental Animals, Vol.61, No.2, pp.147-156, 2012.
    [84] Tsaib Y. H., Leeb K. F., and Huanga Y. B. and et al., “In vitro permeation and in vivo whitening effect of topical hesperetin microemulsion delivery system,” International Journal of Pharmaceutics, Vol. 388, No. 1, pp. 257-262, 2010.
    [85] Xiaoyan Q., Yujin W., and Bangfeng W., “Fast color contrast enhancement method for color night vision,” Infrared Physics & Technology, Vol. 55, No. 1, pp.122-129, 2012.
    [86] 謝怡蕾,「葡萄糖濃度調控不同粒徑白蛋白微氣泡對比劑結合超音波對於內耳細胞基因轉殖之效率」,碩士論文,台灣科技大學,台北 (2013)
    [87] Maxwell A. D., Cain C. A., Hall T. L., Fowlkes J. B., and Xu Z., “Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials,” Ultrasound in Medicine and Biology, vol. 39, pp. 449-65, 2013.
    [88] Shengping Q., Charles F C., and Katherine W. F., “Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering,” Physics in Medicine and Biology, Vol. 54, No. 10, pp. R27-R57, 2009.
    [89] Tezel A., and Mitragotri S., “Interactions of Inertial Cavitation Bubbles with Stratum Corneum Lipid Bilayers during Low-Frequency Sonophoresis,” Biophysical Journal, Vol. 85, No. 6, pp. 3502-3512, 2003.

    無法下載圖示 全文公開日期 2019/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE