簡易檢索 / 詳目顯示

研究生: 孫元平
Yuan-ping Sun
論文名稱: 微奈米量測技術與傳統ASTM量測方法在材料機械性質之比較研究
Comparison Research in The Method of Micro-nano Measurement and Traditional ASTM Testing Method in Characterize Mechanical Properties
指導教授: 吳翼貽
Ye-Ee Wu
口試委員: 張啟生
none
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 105
中文關鍵詞: 奈米壓痕超音波拉伸試驗應變計楊氏係數浦松比
外文關鍵詞: nanoindentation, ultrasonic, tensile test, strain gauge, Young’s modulus, Poisson ratio
相關次數: 點閱:419下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係整合奈米壓痕及超音波量測技術,來量測材料機械性質之楊氏係數及浦松比。經由奈米壓痕及超音波量測得到折合模數(Er)與超音波速和楊氏係數及浦松比間之關係式,將此方程式聯立分析後,即解出材料之楊氏係數及浦松比。為求慎重,亦將相同材料進行ASTM拉伸試驗作相互比較、深入研究及徹底分析。
    本次實驗採用五種不同特性的材料,有壓克力(PMMA)、塑鋼(POM)、鋁(Al)、中碳鋼(S45C)、低碳鋼(S25C)等。實驗結果顯示ASTM拉伸試驗結果均在文獻所列之數值範圍內;以整合量測技術所得實驗結果與以ASTM拉伸實驗結果相比,其楊氏係數之差異為1.1 ﹪至30.6 ﹪,浦松比之差異為0.7 ﹪至 11.9 ﹪。此比較結果顯示本研究所提出的整合奈米壓痕及超音波的量測技術的方法是可行的。


    In this study, the nanoindentation and ultrasonic measurement systems were integrated to measure the Young’s modulus and Poisson ratio of materials.By analyzing the results obtained from the ultrasonic measurements and nonoindetation, the values of Young’s modulus and Poisson ratio can be calculated. To verify the applicability of proposed methodology, traditional ASTM testing method for Young’s modulus and Poisson ratio were also conducted on the same testing materials. Experimental results obtained for both methodologies were reviewed, compared, studied and analyzed.
    There are five different materials used in this experiment. They are PMMA, Polyoxymethylene, Al, S45C, and S25C. Experimental results show that the values of Young’s modulus and Possion ratio obtained by ASTM method are in compliance with those values listed in literature. The differences between the Young’s modulus obtained by the proposed integrated method and those obtained by ASTM method are 1.1 ﹪ to 30.6 ﹪. The differences between the Possion ratio obtained by the proposed integrated method and those obtained by ASTM method are 0.7 ﹪ to 11.9 ﹪. Based on the comparison results, this proposed integrated method of nanoidentation and ultrasonic measument is applicable to measure the Young’s modulus and Poisson ratio of materials.

    中文摘要Ⅰ 英文摘要Ⅱ 誌謝Ⅲ 目錄Ⅳ 圖索引Ⅵ 表索引Ⅷ 第一章 緒言 1 1.1 前言1 1.2 研究動機與目的 4 1.3 研究方法 5 第二章 理論分析 7 2.1 奈米壓痕試驗 7 2.1.1文獻回顧 8 2.1.2 楊氏係數與浦松比 10 2.1.3 硬度 15 2.1.4 預估浦松比的不確定度 18 2.2 超音波試驗 20 2.2.1 文獻回顧 21 2.2.2 橫波 23 2.2.3 縱波 28 2.2.4 表面波 31 2.2.5 預估浦松比的不確定度 32 2.3 應變計試驗 33 2.3.1 文獻回顧 34 2.3.2 電阻式應變計之原理 35 2.3.3 惠斯登電橋之原理 40 第三章 實驗規劃 44 3.1 材料試片選用及製作 46 3.1.1 奈米壓痕試驗試片規劃 48 3.1.2 超音波試驗試片規劃 49 3.1.3 拉伸試驗試片規劃 50 3.2 試驗儀器與架構 52 3.2.1 奈米壓痕試驗 52 3.2.2 超音波試驗 54 3.2.3 拉伸試驗 56 3.3 試驗方法與步驟 60 3.3.1 奈米壓痕試驗程序 60 3.3.2 超音波試驗程序 61 3.3.3 拉伸試驗程序 62 3.3.4 整合奈米壓痕及超音波試驗結果之分析方法 63 第四章 結果與討論 64 4.1 研究成果 64 4.1.1 超音波試驗結果 64 4.1.2 奈米壓痕試驗結果 72 4.1.3 整合奈米壓痕及超音波試驗結果 75 4.1.4 拉伸試驗結果 84 4.2 分析與討論 92 第五章 結論 97 第六章 未來工作 98 參考文獻99 作者簡介105

    1.Jiri Nemecek, Petr Kabele, Zdenek Bittnar, “Nanoindentation based assessment of micromechanical properties of fiber reinforced cementations composite”, 6th RILEM Symposium on Fiber-Reinforced Concretes(FRC)- BEFIB 2004 20-33 September 2004, Varenna, Italy, pp401-410
    2.G Alcala, P Skeldon, G E Thompson, A B Mann, H Habazaki and K Shimizu“Mechanical properties of amorphous anodic alumina and tantala films using nanoindentation”, Nanotechnology 13 451-455, 2002
    3.“International Standard. Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters”. ISO 14577, 2002.
    4.“Standard Practice for Ultrasonic Pulse-Echo Straight-Beam Examination by the Contact Method”, ASTM E114-95, 2005.
    5.”Standard Test Method for Tensile Properties of Plastics”, ASTM D638-03, 2003
    6.“Standard Test Methods for Tension Testing of Metallic Materials”, ASTM E8M-04, 2002
    7.Philip M. Rice and Roger E. Stoller, “Correlation of Nanoindentation and Conventional Mechanical Property Measurements”, Mat. Res. Soc. Symp. Vol. 649 , Materials Research Society, 2001
    8.Chung-Seog Oh, Hak-Joo Lee, Soon-Gyu Ko, Shin-Woo Kim and Hyun-Gyun Ahn, “Comparison of the Young’s modulus of polysilicon film by tensile testing and nanoindentation” Sensors & Actuators A-Physical. 117(1):151-158, 2005 Jan 3
    9.張泰華編著, ”微/納米力學測試技術及其應用”, 機械工業出版社, 2004
    10.Stillwell N A, Tabor D. “Elastic Recovery of Conical Indentation”. Phys. Proc. Soc., pp.169-179, 1961.
    11.N. Sneddon , Int. J. Eng. Sci. 3.47,1965.
    12.Bulychev S I, Alekhin V P, Shorshorov M K, et al. “Determining Young’s Modulus from the Indenter Penetration Diagram“. Zavod. Lab. , pp.11137-11140,1975.
    13.Pethica J B. “Microhardness Tests with Penetration Depths than Ion Implanted Layer Thickness in Ion Implantation into Metals. Ashworth V, et al. eds. Third International Conference on Modification of Surface Properties of Metals by Ion-Implantation. Oxford”. Pergammon Press 182. pp.147-157
    14.H. Hertz, J. R. Angew , “Math”. V92, pp.156,1882.
    15.Loubet J L, Georges J M, Marchesini O, et al. Vicker’s Indentation of Magnesium Oxide. J. Tribol. , V106, pp.43-48 ,1984.
    16.Doerner M F , Nix W D. “A Method of Interpreting the Data from Depth – Sensing Indentation Instruments”. J. Mater. Res., pp. 600 – 609, 1986.
    17.T. A. Laursen and J. C. Simo, “A Study of the mechanics of microindentation using finite elements”, J. Mater. Res., Vol. 7, No.3, pp.618 – 626, 1992.
    18.W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., Vol.7, pp.1564-1583,1992.
    19.M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh, and S. Suresh, “Computational modeling of the forward and reverse problems in instrumented sharp indentation,” Acta Mater., Vol. 49, pp. 3899-3918, 2001.
    20.T. Y. Tsui, W. C. Oliver, and G. M. Pharr, “Influence of stress on the measurement of mechanical properties using: Part I .Experimental studies in an aluminum alloy,” J. Mater. Res., Vol.11 No.3, pp. 758-759, 1996.
    21.Baker, P. Shefford "Measurement of residual-stress effect by nanoindentation on elastically strained (100) W " Thin Solid Films pp 308-309 No1-4, pp289-296, 1997.
    22.Y. T. Cheng and C.M. Cheng, “Scaling approach to conical indentation in elastic-plastic solids with work hardening” J. Appl. Phys., Vol.84, No.3, pp. 1284-1291, 1998.
    23.陳拓丞, “應用因次分析法於奈米壓痕試驗的理論分析與數值模擬:殘留應力、基材效應與年彈性質之研究”, 民國94年
    24.A. K. Bhattacharya and W. D. Nix, “Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates,” Int. J. Solids Struct., Vol.24, No.12, pp. 1287-1298, 1988.
    25.劉政良, ”分子動力學運用於薄膜機械性質之計量與實驗” , 民國93年
    26.林彥宏, “奈米壓痕之表面層效應與結構變化探討”, 民國94年
    27.施孟君, 何恕德, 林鶴南, 陳維釧, 吳信田, “基材效應對薄膜奈米壓痕量測之影響”, 國科會計畫, 台灣, 2002
    28.蘇佳宏, “材料奈米壓痕及奈米磨潤性質量測之研究”, 民國93年
    29.R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Mater., Vol.50, pp. 23-38, 2002.
    30.T. Ohmura, S. Matsuoka, K. Tanaka and T. Yoshida., “Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate”, Thin Solid Films, 385, 2001, pp.198-204.
    31.Mondher Zidi, Luc Carpentier, Antoine Chateauminois, Ph. Kapsa and Francois Sidoroff, “Development of a micro-indentation model simulating different mechanical responses of the fibre/matrix interface”, Composites Science and Technology, 61, 2001, pp.369- 375.
    32.R. B. Pharr, W. C. Oliver, and F. R. Brotzen,” Elastic Analysis of Some Punch Problems for a Layered Medium,” Int. J. Solids Struct., Vol. 23, pp. 1657–1664, 1987.
    33.鄭振東, “超音波工程” ,全華科技圖書股份有限公司, 1999
    34.Heinrich Kuttruff, “Ultrasonics fundamentals and applications”, Elsevier Applied Science, pp3-5,1991.
    35.P.D. Edmonds.,” Ultrasonics” , Academic Press, pp.3-5, ,1981.
    36.Lord Rayleigh, “The Theory of Sound”, 1st Am. Ed., Vols. 1 and 2, Dover, New York, 1945.
    37.J. P. Joule, “Phil Mag.”,[III], pp30-76, 1847
    38.J. Curie and P. Curie, Compt. “Rend. Acad. Sci.”, Paris, pp91-294,1880.
    39.“Standard Test Method for Pulse Velocity Through Concrete”, ASTM C597-02: 2002
    40.“Recommendations for non-destructive methods of test for concrete. Electromagnetic cover measuring devices “ British Standards Institution, BS-4008 ,1969.
    41.“脈波反射式超音波檢測法通則”, CNS 11051 ,74年9月19日
    42.“金屬材料超音波側厚法”, CNS 14135, 87年4月18日
    43. J. L. Rose, “Ultrasonic Waves in Solid Media,” Cambridge University Press, NewYork, 1999.
    44.尹慶中 編著, “應力波與材料性質量測實驗” 國立交通大學機械工程學系講義, 2001
    45.“Nondestructive Material Testing with Ultrasonics - Introduction to the Basic Principles –“ http://www.ndt.net/
    46.Dan Russell, “Acoustics Animations “, http://www.kettering.edu/ , Kettering University Applied Physics:
    47.“The Nature of a Wave”, Physics Tutorial Lesson 1, http://www.physicsclassroom.com/
    48.郭雲龍 ,“工程量測”, 全華科技圖書股份有限公司, 1986年
    49.C.S. Smith, ”Piezoresistance Effect in Germanium and Silicon,” physical review, Vol. 94,p42-49, 1954
    50.James W. Dally, William F. Riley, “Experimental Stress Analysis”, McGraw-Hill companies, Inc., Boston, pp.146-153, pp.242-249, 1999.
    51.“Strain Gage”, http://www.efunda.com/DesignStandards/sensors/strain_gages/, Efunda engineering fundamentals
    52.“Strain Gages” http://www.kyowa-ei.co.jp/english/products/gages/index.htm , KYOWA sensor system solutions
    53. “Materials”, http://www.efunda.com/materials/materials_home/materials.cfm/, Efunda engineering fundamentals
    54 “The A to Z of Materials”, http://www.azom.com/, azom.com

    QR CODE