簡易檢索 / 詳目顯示

研究生: 陳易明
Yi-ming Chen
論文名稱: 多感測器整合全向輪機器人之路徑規畫與追蹤
Trajectory Planning and Tracking of an Omni-wheel Robot Using SensorsIntegration.
指導教授: 陳亮光
Liang-Kuang Chen
口試委員: 姜嘉瑞
Chia-Jui Chiang
林其禹
Chyi-Yeu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 光流感測器全方位運動平台場效函數法內模控制多資訊整合
外文關鍵詞: optical flow sensors, omni-wheel indoor service robot, potential field method
相關次數: 點閱:223下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出藉由安裝低成本的感測器,以提供全向移動平台位移與方向角之資訊供回授
    控制使用。透過整合多組感測器以有效地完成機器人的路徑規畫與路徑追蹤功能,改善
    全向輪移動平台在室內環境中到達指定目的地之性能。透過光流影像可定位出全向輪移
    動平台在室內環境中的行走軌跡,再利用陀螺儀與電子羅盤等感測器的結合,我們可計
    算出該移動平台在空間中的相對位置與方向。路徑規畫與障礙物閃避的功能透過場效函
    數法達成,讓全向輪移動平台能夠自主航行於室內未知環境中,並透過StateFlow建立
    監督式控制器來改善場傳統場效函數法的潛在缺點,使得全向輪移動平台能有夠有效的
    避開演算法中的陷阱。另外,本文使用的全向輪移動平台會有類似黏滯或無反應區
    (Dead-Zone)之效應,故提出一個內模控制器來控制全向輪移動平台來改善此問題所發
    生的效應,使得全向輪移動平台能夠精確地追蹤至使用者所期望的路徑,增加平台移動
    至目的地的準確度。整體系統之效能並透過實驗來比對與驗證。


    The control integration for an omni-wheel service robot is developed in this
    research utilizing multiple low-cost sensors. The path planning and trajectory tracking functions are successfully accomplished based on the sensors, and the goal reaching performance of the omni-wheel platform is improved. The displacement measurement and self-localization of the robot are primarily achieved through the optical-flow sensor. The angular movement and robot orientation are derived based on the measurements from the optical flow sensors, the electronic compass, and the gyroscope. The path planning and obstacle avoidance are developed using the potential field approach, and the robot is capable of autonomous moving in an unknown environment. A supervisory control implemented in StateFlow monitors the potential field method to avoid the algorithmic problems caused by the local minima. Furthermore, the dead-zone nonlinearity is observed inherent in the motor drivers. An internal model control is introduced to counteract the nonlinear effect and improve the low level control performance. The overall system performance is evaluated experimentally with different operating scenarios.

    摘要I 目錄III 圖目錄VI 表目錄XX 第一章緒論1 1.1研究動機與目的1 1.2研究背景與發展概況4 1.2.1全向性移動平台機構之文獻探討4 1.2.2光流感測器的發展與應用6 1.2.3全向性移動平台定位研究、路徑規畫與避障8 1.3研究目標與工作項目10 1.4論文架構11 第二章全向平台運動模型與系統架構12 2.1全向平台運動模型12 2.2全向平台系統架構15 2.3硬體感測器測試16 2.3.1全方位運動平台17 2.3.2微控制器 BASIC Stamp20 2.3.3Quadrature Decoder21 2.3.4光流感測器(Optical flow sensor)22 2.3.5數位電子羅盤 TDCM3 28 2.3.6訊號擷取卡32 2.3.7陀螺儀32 2.3.8紅外線雷射測距儀35 2.3.9紅外線測距儀37 2.3.10傾斜儀38 2.4全向平台移動資訊40 2.4.1全向平台X、Y軸資訊40 2.4.2全向平台Z軸資訊40 2.4.3感測器融合47 2.5全向平台開回路補償50 第三章全向平台之模型建立與控制器設計52 3.1全向平台之參考模型52 3.1.1各輪軸特性分析52 3.1.2全向輪軸系統識別58 3.1.3全向平台之參考模型建立59 3.2全向平台之控制器設計60 3.2.1控制器設計60 3.2.2全向平台控制器驗證模擬62 3.2.3全向平台控制器驗證實驗65 3.3實驗結果討論71 第四章全向平台之路徑規畫與避障72 4.1傳統場效函數法72 4.1.1吸力場函數73 4.1.2斥立場函數74 4.2改良場效函數法75 4.2.1判斷全向平台是否陷入Trap-State 條件75 4.2.2沿牆法(OBFM)的移動方式77 4.2.3改良場效法的運作流程79 4.2.4GNRON問題81 4.2.5多資訊整合StateFlow控制器81 4.3全向平台路徑規畫與避障實驗83 4.4實驗結果與討論93 第五章結論與未來展望94 5.1實驗成果94 5.2未來展望95 參考文獻96

    1.白忠哲. "機器人市場與領導廠商動態," 10.6,2008; http://www.robotworld.org.tw/index.htm?pid=10&News_ID=2200.
    2.中華民國經濟部工業局. "機器人創意競賽 年輕創意具商機 廠商上門求合作," 11.8, 2007; http://cdnet.stpi.org.tw/techroom/policy/2007/policy_07_247.htm.
    3.財團法人精密機械研究發展中心. "智慧型機器人產業發展推動計劃介紹," 8, 2005; http://www.robotworld.org.tw/index.htm?pid=22.
    4.明亮. "機器人當道成為經濟新引擎," http://www.teema.org.tw/publish/moreinfo.asp?autono=2743.
    5.莊孝麟, “全向性移動平台之精密運動控制設計,” 國立交通大學電機與控制研究所碩士論文.
    6.S. Bemis, B. Riess, and S. Nokleby, "Control of a novel omni-directional platform," Canadian Conference on Electrical and Computer Engineering. pp. 761-766, 2008.
    7.C.-C. Shih, “Design a car-lile mobile robot platform using nervous system structure,” Thesis for Master of Science, Department of Electrical Engineering, Tatung, 2004.
    8.C. B. Low, and D. Wang, “GPS-based tracking control for a car-like wheeled mobile robot with skidding and slipping,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, pp. 480-484, 2008.
    9.D. Kurabayashi, K. Okita, T. Funato et al., "Obstacle avoidance of a mobile robot group using a nonlinear oscillator network," IEEE International Conference on Intelligent Robots and Systems. pp. 186-191, 2006.
    10.C. Abdelmoula, M. Masmoudi, and F. Chaari, "Obstacle avoidance of a mobile robot using a hierarchical control," International Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS'08. p. 4540257, 2008.
    11.J.-H. Cheng, “Spatial Path Tracking System Design for an Omni-directional Platform Using Optical Flow Sensors
    ”, Electrical and Control Engineering, National Chiao Tung, 2006.7.
    12.B. Carlisle, “OMNI-DIRECTIONAL MOBILE ROBOT,” pp. 79-87, 1983.
    13.T. B. Lauwers, G. A. Kantor, and R. L. Hollis, "A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive," Proceedings - IEEE International Conference on Robotics and Automation. pp. 2884-2889, 2006.
    14.J. A. Cobano, J. Estremera, and P. Gonzalez de Santos, “Location of legged robots in outdoor environments,” Robotics and Autonomous Systems, vol. 56, no. 9, pp. 751-761, 2008.
    15.H.-Y. Mao, “Development of Hospital Service Robot Systems,” Graduate Institute Of Medical Mechatronics, Chang Gune, 2008.
    16.HONDA台灣官方汽車. "創新科技ASIMO," http://www.honda-taiwan.com.tw/tech/asimo/index.html.
    17.S.-P. Cheng, “Self-localization and path-planning of an omni-directional robot,” Institute of Electrical Engineering, National Yunlin University of Science & Technology, 2007.
    18.Y. Liu, R. L. Williams Ii, and J. J. Zhu, "Integrated control and navigation for omni-directional mobile robot based on trajectory linearization," Proceedings of the American Control Conference. pp. 2153-2158, 2007.
    19.T. Suwannathat, J.-I. Imai, and M. Kaneko, "Omni-directional audio-visual speaker detection for mobile robot," Proceedings - IEEE International Workshop on Robot and Human Interactive Communication. pp. 141-144, 2007.
    20.A. S. Conceicao, H. P. Oliveira, A. S. Silva et al., "A nonlinear model predictive control of an omni-directional mobile robot," IEEE International Symposium on Industrial Electronics. pp. 2161-2166, 2007.
    21.R. Ding, T. Zheng, L. Zhao et al., "Design and realization of Omni-directional mobile robot body based on Zigbee Technology," Proceedings of The 5th IEEE International Symposium on Embedded Computing, SEC 2008. pp. 207-211, 2008.
    22.T. Isoda, P. Chen, T. Toyota et al., "Omni-directional Mobile Robot for autonomic offroad running," Robot and Human Communication - Proceedings of the IEEE International Workshop. pp. 64-69, 1997.
    23.M. Ashmore, and N. Barnes, “Omni-drive robot motion on curved paths: The fastest path between two points is not a straight-line ”, Department of Computer Science and Software Engineering Melbourne AUSTRALIA 2002.
    24.S. L. Dickerson, and B. D. Lapin, "Control of an omni-directional robotic vehicle with Mecanum wheels." pp. 323-328, 1991.
    25.A. Shimada, S. Yajima, P. Viboonchaicheep et al., "Mecanum-wheel vehicle systems based on position corrective control," IECON Proceedings (Industrial Electronics Conference). pp. 2077-2082, 2005.
    26.Airtrax. "Airtrax Sidewinder," <http://www.airtrax.com/vehicles/sidewinder.html>.
    27.Y. Liu, J. J. Zhu, R. L. Williams Ii et al., “Omni-directional mobile robot controller based on trajectory linearization,” Robotics and Autonomous Systems, vol. 56, no. 5, pp. 461-479, 2008.
    28.S. Lee, "Mobile robot localization using optical mice," 2004 IEEE Conference on Robotics, Automation and Mechatronics. pp. 1192-1197, 2004.
    29.J. Palacin, I. Valganon, and R. Pernia, “The optical mouse for indoor mobile robot odometry measurement,” Sensors and Actuators, A: Physical, vol. 126, no. 1, pp. 141-147, 2006.
    30.S. Kim, and S. Lee, "Robust mobile robot velocity estimation using redundant number of optical mice," Proceedings of the 2008 IEEE International Conference on Information and Automation, ICIA 2008. pp. 107-112, 2008.
    31.A. Bonarini, M. Matteucci, and M. Restelli, "Automatic error detection and reduction for an odometric sensor based on two optical mice," Proceedings - IEEE International Conference on Robotics and Automation. pp. 1675-1680, 2005.
    32.A. Bonarini, M. Matteucci, and M. Restelli, "A kinematic-independent dead-reckoning sensor for indoor mobile robotics," 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 3750-3755, 2004.
    33.J.-S. Hu, J.-H. Cheng, and Y.-J. Chang, "Spatial trajectory tracking control of omni-directional wheeled robot using optical flow sensors," Proceedings of the IEEE International Conference on Control Applications. pp. 1462-1467, 2007.
    34.Y.-J. Hsuei, “Localization of an Omni-directional Platform Using Sound field Characteristics and Optical Flow Sensing
    ”, Electrical and Control Engineering, National Chiao Tung, 2006.
    35.G. Lu fang, G. Yu xian, F. Sheng et al., "Obstacle avoidance approach in dynamic environment using sonar range finder and optic mice." pp. 423-428, 2007.
    36.J. A. Cooney, W. L. Xu, and G. Bright, “Visual dead-reckoning for motion control of a Mecanum-wheeled mobile robot,” Mechatronics, vol. 14, no. 6, pp. 623-637, 2004.
    37.L.-B. J. C.C. Tsai, “Kinematics control of an Omnidirectional Mobile Robot,” in CACS Automatic Control Tainan, 2005, pp. 13-18.
    38.S. S. Ge, and Y. J. Cui, “Dynamic motion planning for mobile robots using potential field method,” Autonomous Robots, vol. 13, no. 3, pp. 207-222, 2002.
    39.S. K. Pradhan, D. R. Parhi, A. K. Panda et al., “Potential field method to navigate several mobile robots,” Applied Intelligence, vol. 25, no. 3, pp. 321-333, 2006.
    40.M. Liu, H. Zhang, and T. Hu, “Navigation of mobile robot using improved artificial potential field method,” Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), vol. 36, no. SUPPL. 1, pp. 177-180, 2008.
    41.J.-W. Lee, S.-U. Choi, Y.-J. Lee et al., "A study on recognition of road lane and movement of vehicles using vision system," Proceedings of the SICE Annual Conference. pp. 38-41, 2001.
    42.T. Wang, and J. Yang, "Certainty grids method in robot perception and navigation," IEEE International Symposium on Intelligent Control - Proceedings. pp. 539-544, 1995.
    43.J. Li, Y. Feng, and G. Guo, "Real-time path planning based on certainty grids map in complex environments," IEEE ICIT 2007 - 2007 IEEE International Conference on Integration Technology. pp. 525-529, 2007.
    44.P. Van Turennout, G. Honderd, and L. J. van Schelven, "Wall-following control of a mobile robot," Proceedings - IEEE International Conference on Robotics and Automation. pp. 280-285, 1992.
    45.A. Bemporad, M. Di Marco, and A. Tesi, "Wall-following controllers for sonar-based mobile robots," Proceedings of the IEEE Conference on Decision and Control. pp. 3063-3068, 1997.
    46.Z. Yi, and L. Yuan, "Application of fuzzy neural networks in data fusion for mobile robot wall-following," Proceedings of the World Congress on Intelligent Control and Automation (WCICA). pp. 6575-6579, 2008.
    47.C. Li, J. Zhang, and Y. Li, "Application of artificial neural network based on Q-learning for mobile robot path planning," Proceedings of IEEE ICIA 2006 - 2006 IEEE International Conference on Information Acquisition. pp. 978-982, 2006.
    48.H. Xiao, L. Liao, and F. Zhou, "Mobile robot path planning based on Q-ANN," Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2007. pp. 2650-2654, 2007.
    49.P. Rusu, E. M. Petriu, T. E. Whalen et al., “Behavior-based neuro-fuzzy controller for mobile robot navigation,” IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 4, pp. 1335-1340, 2003.
    50.S.-T. Li, and Y.-C. Li, "Neuro/fuzzy behavior-based control of a mobile robot in unknown environments," Proceedings of 2004 International Conference on Machine Learning and Cybernetics. pp. 806-811, 2004.
    51.台灣東方馬達股份有限公司, AXH Series DataSheet.
    52.Avago, HCTL-2032 Datasheet.
    53.D. K. Sorensen, “On-Line Optical Flow Feedback for Mobile Robot Localization/Navigation,” Mechanical Engineering, Texas A&M, 2003.
    54.原相企業股份有限公司, “PAW3601DH-NF Bundles Datasheet introduction.”
    55.T. TECHNOLOGY, TDCM3 DIGITAL COMPASS MODULE Datasheet.
    56.A. Devices, “ADXRS300 Datasheet ”.
    57.HOKUYO公司, Laser Range Finder URG-04LX Datasheet.
    58.J. C. Latombe, “Robot Motion Planning,” in 3rd edition, Kluwer Academic, 1991.
    59.S. S. Ge, and Y. J. Cui, “New potential functions for mobile robot path planning,” Robotics and Automation, IEEE Transactions on, vol. 16, no. 5, pp. 615-620, 2000.

    無法下載圖示 全文公開日期 2014/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE