簡易檢索 / 詳目顯示

研究生: 林堉鋐
Yu-Hong, Lin
論文名稱: 四旋轉軸單晶矽晶球拋光加工機設計與研拋製程參數分析研究
Design of 4-Axis Rotational Sphere Polisher and Analysis of Lapping and Polishing Parameters for Fabrication of Single Crystal Silicon Sphere
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 陳炤彰
Chao-Chang A. Chen
陳順同
Shun-Tong Chen
趙崇禮
Choung-Lii Chao
蔡曜陽
Yao-Yang Tsai
蔡明忠
TSAI,MING-JUNG
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 206
中文關鍵詞: 單晶矽晶球球體加工四旋轉軸球拋機固相化學反應化學機械拋光
外文關鍵詞: Single-crystal Silicon sphere, 4-Axis of Rotation polisher, Sphere manufacturing, Solid Phase Chemical Reaction, Chemical Machine Polishing
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 澳洲聯邦科學暨工業研究院與德國聯邦物理技術研究院使用 Cup-type球拋機搭配氧化鋁磨料研光和粗拋與酸性的二氧化鈦拋光液精拋製出單晶矽晶球,並在2019 成為最新的國際質量原器。本研究自行設計四旋轉軸球拋機,可加工直徑50~100mm、2公斤以內的球體、最高工作壓力0.6MPa、最高轉速300rpm,和可透過化學反應產生鈍化層的研光液和拋光液進行單晶矽晶球製作。首先以三因子二水準進行研光和化學機械拋光的實驗設計,實驗因子為壓力、轉速、研光液流率,實驗球體為黃玉石和單晶矽。結果顯示,在壓力0.2 MPa、轉速100 rpm,和研光液流率150 ml/min時有最佳研光結果;於壓力0.2 MPa、轉速50 rpm,和SP4080-2拋光液流率150 ml/min時有最佳拋光品質。接著,根據實驗設計的最佳結果搭配機械力移除研光液和SP4080-2拋光液進行黃玉球加工並得到真球度5.3μm、粗糙度Sa 0.012 μm,和Sq 0.017 μm的品質;最後,搭配固相化學反應研光液與SP4080-2拋光液進行單晶矽晶球加工實驗,得到真球度2.8 μm、粗糙度Sa 6 nm,和Sq 8 nm的單晶矽晶球。在球體加工應避免易發生震動的高壓力與高轉速,且高加工液流率會有很好的加工成效。


    In 2019, the new mass standard of the international system of units (SI) is to fabricate a silicon (Si) sphere by cup-type sphere polisher by adding Al2O3 abrasives and acidic titanium dioxide slurries from Commonwealth Scientific and Industrial Research Organization and Physikalisch-Technische Bundesanstalt. In this study, the Si sphere was fabricated by a self-develop 4-axis- rotation sphere polisher that can apply to the sphere under 2 kilogram and diameter of 50-100mm also have 0.6MPa of maximum pressure and 300 rpm of highest rotation, adding slurry to reactive soft-layer. First, the design of experiments (DOE) of lapping and polishing with three-factor and two-level: The factors are the pressure, the rotation speed, and the slurry rate. The material of sphere is made of topaz and Si. When the condition is under 0.2 MPa, 100 rpm, and the 150ml/min lapping slurry rate has the best lapping quality; 0.2 MPa, 50 rpm, and the 150ml/min of polishing slurry rate has the best polishing quality. Then, the topaz sphere has 5.3μm of sphericity, Sa 0.012μm, and Sq 0.017μm by combining the DOE result and traditional lapping slurry, SP4080-2 polishing slurry. The Si sphere has sphericity of 2.8μm, Sa 6nm, and Sq 8nm when DOE results combine lapping slurry with solid phase chemical reaction and SP4080-2 polishing slurry. High pressure and high speed will cause the vibration of the polisher. Better sphere quality needs to increase the slurry rate.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 XI 表目錄 XIX 符號表 XXIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 11 1.3 論文架構 14 第二章 文獻回顧 16 2.1 球體加工設備與製程 16 2.1.1 V形槽研磨機構 16 2.1.2 Cup-Type球體拋機 18 2.2 單晶矽晶球製作 25 2.3 單晶矽晶球化學機械拋光 31 2.4 文獻回顧總結 33 第三章 四旋轉軸球拋機設計與加工原理 38 3.1 球拋製程探討 38 3.1.1 單晶矽晶球成形製程 38 3.1.2 研光製程與耗材 39 3.1.3 拋光製程與耗材 40 3.2 四旋轉軸球拋機設計 41 3.2.1 SP-100四旋轉軸球體加工機 41 3.2.2 操作介面與控制系統 43 3.2.3 直線往復進給機構 46 3.2.4 旋轉軸驅動機構 47 3.2.5 平移與角度校正機構 48 3.2.6 加工液供給系統 49 3.3 SP-100座標系與球體加工均勻度 52 3.3.1 SP-100座標系 52 3.3.1 球體加工均勻度 54 3.4 機台校正 57 3.5 馬達轉速閉迴路控制 60 3.6 製程旋轉組合 60 3.7 球體量測 62 3.7.1 真球度量測 62 3.7.2 表面粗糙度量測 64 第四章 黃玉球研光實驗與加工 65 4.1 黃玉球規格 65 4.2 研光液製備 66 4.2.1 機械力移除研光液製備 66 4.2.2 矽晶球之固相化學反應研光液製備 68 4.3 研光液性質量測與分析 69 4.3.1 研光液之分佈性量測 69 4.3.2 研光液之分散性量測 72 4.3.3 研光液之酸鹼值與黏度量測 74 4.4 黃玉球研光實驗設計 78 4.4.1 黃玉球研光實驗參數 79 4.4.2 黃玉球研光實驗真球度分析 80 4.4.3 黃玉球研光實驗移除率分析 84 4.5 黃玉球研光加工 88 4.5.1 黃玉球研光參數 89 4.5.2 黃玉球研光真球度分析 91 4.5.3 黃玉球研光移除率分析 92 4.5.4 黃玉球研光粗糙度分析 93 第五章 黃玉球拋光實驗與加工 95 5.1 黃玉球拋光實驗設計 96 5.1.1 黃玉球拋光實驗參數 96 5.1.2 黃玉球拋光實驗真球度分析 97 5.1.3 黃玉球拋光實驗移除率分析 101 5.1.4 黃玉球拋光實驗粗糙度分析 104 5.2 黃玉球拋光加工 112 5.2.1 黃玉球拋光參數 113 5.2.2 黃玉球拋光真球度分析 114 5.2.3 黃玉球拋光移除率分析 114 5.2.4 黃玉球拋光粗糙度分析 115 5.3 黃玉球研拋光加工討論 116 第六章 單晶矽晶球加工探討 117 6.1 單晶矽晶球研粗胚規格 117 6.2 單晶矽晶球研光加工 117 6.2.1 單晶矽晶球研光參數 118 6.2.2 單晶矽晶球研光真球度分析 120 6.2.3 單晶矽晶球研光移除率分析 121 6.2.4 單晶矽晶球研光粗糙度分析 122 6.3 單晶矽晶球拋光加工 124 6.3.1 單晶矽晶球拋光參數 125 6.3.2 單晶矽晶球拋光真球度分析 126 6.3.3 單晶矽晶球拋光移除率分析 126 6.3.4 單晶矽晶球拋光粗糙度分析 127 6.3.5 工研院真球度量測結果 129 6.4 國內外單晶矽晶球品質總述 131 6.4.1 本研究單晶矽晶球加工討論 131 6.4.2 國際單晶矽晶球比較 132 第七章 結論與建議 134 7.1 結論 134 7.2 建議 136 參考文獻 138 附錄A 實驗球體與耗材 142 附錄B 歷代球拋機設計圖 147 附錄C 真球度量測結果 148 附錄D 粗糙度量測結果 158 附錄E 黃玉球加工實體圖 174 附錄F 量測儀器 176 作者簡介 179

    [1] A Turning Point for Humanity: Redefining the World’s Measurement System. Retrieved from https://reurl.cc/zrKM7Q (Dec 31 ,2022).
    [2] Barry Wood, and Horst Bettin. "The Planck constant for the definition and realization of the kilogram.", Annalen der Physik, 2019.
    [3] 陳炤彰(民108)。先進化學機械拋光法於單晶矽球之質量原器製造研究," 科技部專題研究計畫申請書(108WFA2510140)。臺北市: 科技部。
    [4] A Turning Point for Humanity: Redefining the World’s Measurement System. Retrieved from https://reurl.cc/zrKM7Q (Dec 31 ,2022).
    [5] Horst Bettin, Kenichi Fujii, and Arnold Nicolaus. "Silicon spheres for the future realization of the kilogram and the mole." Comptes Rendus Physique 20.1-2 2019.
    [6] “Auf dem Weg zu einem neuen Kilogramm”, Physikalisch-Technisch Bundesanstalt, Deutscland, 2019.
    [7] “Experimente für das neue Internationale Einheitensystem (SI)“, Physikalisch-Technische Bundesanstalt, PTB,Deutscland, 2016.
    [8] Harald Bosse, and Horst Kunzmann, et al. "Contributions of precision engineering to the revision of the SI." CIRP Annals 2017.
    [9] R. Arnold Nicolaus, and Guido Bartl, et al. "Current State of Avogadro Si28 sphere S8." IEEE Transactions on Instrumentation and Measurement 62.6 2013.

    [10] Tomohiro Narukawa, and Akiharu Hioki, et al. "Molar-mass measurement of a 28Si-enriched silicon crystal for determination of the Avogadro constant." Metrologia 2014.
    [11] A. Nicolaus, R. Meeß, and G. Bartl, "New Avogadro spheres for the redefinition of the kilogram," in Key Engineering Materials, 2014.
    [12] Katharina Lehrmann, Dorothea Knopf, and Frank Härtig. "Status of the realization and dissemination of the kilogram via silicon spheres." 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). IEEE, 2018.
    [13] Mengran Ge, and Hongtao Zhu⁎, et al. "Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments."Materials Science in Semiconductor Processing 74, 2018.
    [14] Egemen Teomete. "Roughness damage evolution due to wire saw process."International Journal of Precision Engineering and Manufacturing 12.6, 2011.
    [15] 黃堯弘, "電泳沉積輔助線鋸切割矽基板加工之永續性分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2012.
    [16] B. Zhang, and A. Nakajima. "Spherical surface generation mechanism in the grinding of balls for ultraprecision ball bearings." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 214.4, 2000.
    [17] Ming Jiang, and R. Komanduri. "On the finishing of Si3N4 balls for bearing applications." Wear 215.1-2, 1998.

    [18] B. L. Vickers, and R. E. Thill. "A new technique for preparing rock spheres." Journal of Physics E: Scientific Instruments 1969.
    [19] L. Folks, and R. Street, et al. "A sphere forming and polishing machine." Measurement Science and Technology 1994.
    [20] W. J. P. E. Angele. "Finishing high precision quartz balls," Precision Enfineering. vol. 2, no. 3, pp. 119-122, 1980.
    [21] Bin Zhou, and Yinan Xia. "Study on Processing of High Precision Graphite Ball with Four Axis Ball Grinder." 4th Annual International Conference on Material Engineering and Application (ICMEA 2017). Atlantis Press, 2018.
    [22] A. Leistner, and W. J. M. Giardini, "Fabrication and testing of precision spheres," Matrologia.vol. 28, no. 6, p. 503, 1991.
    [23] A. Leistner, and W. J. M. Giardini, "Fabrication and sphericity measurements of single-crystal silicon spheres,"Matrologia. vol. 31, no. 3, p. 231, 1994.
    [24] Günter Hinzmann et al “Maschine zum Herstellen von Kugeln, Kugel und Verfahren zum Herstellen einer Kugel“ DE102015110712A1, 2017
    [25] 周立翔, "三軸球體拋光監控系統與單晶矽晶球拋光材料移除率分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2022.
    [26] Leistner, Achim J., et al. "High-precision large- diameter single-
    crystal silicon spheres: their fabrication and measure-ments of
    sphericity." Optical Manufacturing and Testing. Vol. 2536. SPIE, 1995.
    [27] Oleg V. Zakharov, and Nikolai M. Bobrovsky, et al. “A sphericity measurement method based on the minimum measuring zone.” AIP Conference Proceedings. Vol. 1785. No. 1. AIP Publishing LLC, 2016.
    [28] 楊智安, “電泳輔助複合式游離磨料應用於單晶矽晶圓,” 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2017.
    [29] John Stoup, and Theodore Doiron. "Measurements of large silicon spheres using the NIST M48 coordinate measuring machine." Recent Developments in Traceable Dimensional Measurements II. Vol. 5190. SPIE, 2003.
    [30] 楊宗融, “可撓式顆粒輔助化學機械拋光製程研究,”碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2016.
    [31] 郭尚儒,“電致動力輔助化學機械平坦化製程應用於玻璃穿孔晶圓平坦化研究" 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2016.

    無法下載圖示 全文公開日期 2025/02/15 (校內網路)
    全文公開日期 2025/02/15 (校外網路)
    全文公開日期 2025/02/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE