簡易檢索 / 詳目顯示

研究生: 劉威廷
Wei-Ting Liu
論文名稱: 基於二元樹搜尋法和RBFNN模型之配電系統三相電力潮流運算
Three-Phase Power Flow Calculations using Binary Tree Algorithm with RBFNN based Network Models for Distribution Systems
指導教授: 楊念哲
Nien-Che Yang
口試委員: 黃維澤
Wei-Tzer Huang
張建國
Chien-Kuo Chang
謝廷彥
Ting-Yen Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 126
中文關鍵詞: 二元樹搜尋法RBFNN模型非線性元件徑向基函式神經網路T矩陣前後掃描法電力潮流
外文關鍵詞: Binary tree algorithm, RBFNN based network models, Non-linear elements, Radial basis function neural network, T matrix, Forward and backward sweep approach, Power flow
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要目的在於開發出基於二元樹搜尋法和RBFNN模型之配電系統三相電力潮流運算。首先,針對串聯型元件及並聯型元件等非線性元件,經由徑向基函式神經網路(Radial Basis Function Neural Network, RBFNN)訓練開發出新元件模型。其次,針對三相輻射狀配電系統,提出之基於二元樹搜尋之電力潮流法,以二元樹所創的T矩陣與前後掃描法運算結合。本論文皆利用商用套裝軟體Matlab 2016a版,開發新的三相電力潮流分析法以及新元件模型。最後,以IEEE測試系統為基準,在準確性、執行時間、疊代次數等項目來驗證所提出的方法。


The major purpose of this thesis is to develop the three-phase power flow calculations using the binary tree algorithm with radial basis function neural network (RBFNN) based network models for distribution systems. Firstly, for non-linear elements such as series element and parallel element, new network component models have been developed via RBFNN training. Secondly, for three-phase radial distribution systems, the proposed power flow method is combined with the T matrix obtained by the binary tree search algorithm, and forward and backward sweep approach. In this thesis, the new three-phase power flow analysis method and new network component models are developed by Matlab 2016a commercial software package. Finally, the IEEE test systems are used as benchmark to demonstrate the proposed method in terms of accuracy, execution time, and iteration number.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 符號說明 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與步驟 2 1.3 研究貢獻 2 1.4 論文架構 3 第二章 配電系統元件模型建構 5 2.1 前言 5 2.2 傳輸線 5 2.2.1 架空線路 5 2.2.2 地下電纜線路 10 2.2.3 傳輸線雙埠網路矩陣 17 2.2.4 傳輸線匯流排等效導納矩陣 18 2.3 變壓器 19 2.3.1 變壓器雙埠網路矩陣 19 2.3.2 變壓器匯流排等效導納矩陣 25 2.4 電壓調整器 30 2.5 電力負載 32 2.5.1 集中式負載 32 2.5.2 分散式負載 36 2.5.3 電動車 38 2.6 並聯電容器 39 2.7 結語 40 第三章 現有配電系統三相電力潮流分析技術 41 3.1 前言 41 3.2 基於RBFNN神經網路之電力潮流分析 41 3.2.1 RBFNN神經網路 41 3.2.2 基於RBFNN之電力潮流法步驟 44 3.3 基於前後掃描法之電力潮流分析 46 3.3.1 回向電流搜尋 46 3.3.2 前向電壓搜尋 47 3.3.3 前後掃描法步驟 47 3.4 結語 49 第四章 新型電力潮流法 51 4.1 前言 51 4.2 二元樹搜尋法電力潮流法 51 4.2.1 二元樹搜尋法 51 4.2.2 基於二元樹搜尋法之電力潮流法 55 4.3 基於RBFNN元件模型 59 4.4 新型電力潮流法步驟流程 62 4.5 結語 66 第五章 各測試系統分析與比較 67 5.1 前言 67 5.2 基於RBFNN元件模型分析 67 5.2.1 變壓器測試 67 5.2.2 傳輸線測試 69 5.2.3 負載測試 78 5.2.4 綜合測試 84 5.3 IEEE 4 Node測試系統分析 86 5.3.1 變壓器測試 87 5.3.2 傳輸線測試 89 5.3.3 負載測試 89 5.3.4 綜合測試 91 5.4 IEEE 13 Node測試系統分析 92 5.4.1 RBFNN未訓練分析結果 95 5.4.2 變壓器測試 96 5.4.3 傳輸線測試 98 5.4.4 負載測試 99 5.5 現有配電系統三相電力潮流分析技術之比較與分析 101 5.6 結語 104 第六章 結論及未來研究方向 105 6.1 結論 105 6.2 未來研究方向 106 參考文獻 107

[1] J.-H. Teng, "A modified Gauss–Seidel algorithm of three-phase power flow analysis in distribution networks," International journal of electrical power & energy systems, vol. 24, pp. 97-102, 2002.
[2] S. Chatterjee and S. Mandal, "A novel comparison of gauss-seidel and newton-raphson methods for load flow analysis," in 2017 International Conference on Power and Embedded Drive Control (ICPEDC), 2017, pp. 1-7.
[3] G. Gilbert, D. Bouchard, and A. Chikhani, "A comparison of load flow analysis using DistFlow, Gauss-Seidel, and optimal load flow algorithms," in Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No. 98TH8341), 1998, pp. 850-853.
[4] W. F. Tinney and C. E. Hart, "Power flow solution by Newton's method," IEEE Transactions on Power Apparatus and systems, pp. 1449-1460, 1967.
[5] A. P. de Moura and A. A. F. de Moura, "Newton–Raphson power flow with constant matrices: a comparison with decoupled power flow methods," International Journal of Electrical Power & Energy Systems, vol. 46, pp. 108-114, 2013.
[6] V. M. da Costa, N. Martins, and J. L. R. Pereira, "Developments in the Newton Raphson power flow formulation based on current injections," IEEE Transactions on power systems, vol. 14, pp. 1320-1326, 1999.
[7] T. Kulworawanichpong, "Simplified Newton–Raphson power-flow solution method," International journal of electrical power & energy systems, vol. 32, pp. 551-558, 2010.
[8] G. Chang, S. Chu, and H. Wang, "A simplified forward and backward sweep approach for distribution system load flow analysis," in 2006 International Conference on Power System Technology, 2006, pp. 1-5.
[9] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. Luo, "A compensation-based power flow method for weakly meshed distribution and transmission networks," IEEE Transactions on power systems, vol. 3, pp. 753-762, 1988.
[10] A. Bhutad, S. Kulkarni, and S. Khaparde, "Three-phase load flow methods for radial distribution networks," in TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, 2003, pp. 781-785.
[11] P. Samal and S. Ganguly, "A modified forward backward sweep load flow algorithm for unbalanced radial distribution systems," in 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1-5.
[12] A. Rana, J. Darji, and M. Pandya, "Backward/forward sweep load flow algorithm for radial distribution system," Int. J. Sci. Res. Dev, vol. 2, pp. 398-400, 2014.
[13] J.-H. Teng, "A direct approach for distribution system load flow solutions," IEEE Transactions on power delivery, vol. 18, pp. 882-887, 2003.
[14] T.-H. Chen, M.-S. Chen, T. Inoue, P. Kotas, and E. A. Chebli, "Three-phase cogenerator and transformer models for distribution system analysis," IEEE Transactions on Power Delivery, vol. 6, pp. 1671-1681, 1991.
[15] W.-M. Lin, Y.-S. Su, H.-C. Chin, and J.-H. Teng, "Three-phase unbalanced distribution power flow solutions with minimum data preparation," IEEE Transactions on power Systems, vol. 14, pp. 1178-1183, 1999.
[16] H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi, "Generalized three phase robust load-flow for radial and meshed power systems with and without uncertainty in energy resources using dynamic radial basis functions neural networks," Journal of Cleaner Production, vol. 174, pp. 96-113, 2018.
[17] W. H. Kersting, Distribution system modeling and analysis: CRC press, 2012.
[18] T.-H. Chen, M.-S. Chen, K.-J. Hwang, P. Kotas, and E. A. Chebli, "Distribution system power flow analysis-a rigid approach," IEEE Transactions on Power Delivery, vol. 6, pp. 1146-1152, 1991.
[19] D. Thukaram, H. W. Banda, and J. Jerome, "A robust three phase power flow algorithm for radial distribution systems," Electric Power Systems Research, vol. 50, pp. 227-236, 1999.
[20] M.-S. Chen and W. E. Dillon, "Power system modeling," Proceedings of the IEEE, vol. 62, pp. 901-915, 1974.
[21] M.-S. Chen and T.-H. Chen, "Application of three-phase load flow to power system distribution automation," in 1991 International Conference on Advances in Power System Control, Operation and Management, APSCOM-91., 1991, pp. 472-478.
[22] W. Lin and J. Teng, "Phase-decoupled load flow method for radial and weakly-meshed distribution networks," IEE Proceedings-Generation, Transmission and Distribution, vol. 143, pp. 39-42, 1996.
[23] T.-H. Chen and W.-C. Yang, "Modeling and analysis of three-phase four-wire distribution transformers with mid-tap on the secondary side," in Proceedings of EMPD'98. 1998 International Conference on Energy Management and Power Delivery (Cat. No. 98EX137), 1998, pp. 723-727.
[24] T.-H. Chen and J.-D. Chang, "Open wye-open delta and open delta-open delta transformer models for rigorous distribution system analysis," in IEE Proceedings C (Generation, Transmission and Distribution), 1992, pp. 227-234.
[25] R.-N. Liao and N.-C. Yang, "Load-shedding strategy using a zero-sequence power supply scheme for distribution networks in a modern home or building," Energy and Buildings, vol. 159, pp. 179-190, 2018.
[26] M. Irving and A. Al-Othman, "Admittance matrix models of three-phase transformers with various neutral grounding configurations," IEEE Transactions on Power Systems, vol. 18, pp. 1210-1212, 2003.
[27] W. H. Kersting, W. H. Phillips, and W. Carr, "A new approach to modeling three-phase transformer connections," IEEE Transactions on Industry Applications, vol. 35, pp. 169-175, 1999.
[28] R. C. Dugan, "A perspective on transformer modeling for distribution system analysis," in 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491), 2003, pp. 114-119.
[29] M. E. Baran and E. A. Staton, "Distribution transformer models for branch current based feeder analysis," IEEE Transactions on Power Systems, vol. 12, pp. 698-703, 1997.
[30] A. Bokhari, A. Alkan, R. Dogan, M. Diaz-Aguiló, F. De Leon, D. Czarkowski, et al., "Experimental determination of the ZIP coefficients for modern residential, commercial, and industrial loads," IEEE Transactions on Power Delivery, vol. 29, pp. 1372-1381, 2013.
[31] A. Garces, "A linear three-phase load flow for power distribution systems," IEEE Transactions on Power Systems, vol. 31, pp. 827-828, 2015.
[32] T.-H. Chen and S.-W. Wang, "Applications of simplified bi-directional feeder models for accelerating the voltage-drop and power-loss calculations," in Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD'95, 1995, pp. 708-713.
[33] J. G. Vlachogiannis, "Probabilistic constrained load flow considering integration of wind power generation and electric vehicles," IEEE Transactions on Power Systems, vol. 24, pp. 1808-1817, 2009.
[34] N.-C. Yang and H.-C. Chen, "Decomposed Newton algorithm-based three-phase power-flow for unbalanced radial distribution networks with distributed energy resources and electric vehicle demands," International Journal of Electrical Power & Energy Systems, vol. 96, pp. 473-483, 2018.
[35] Q. Yu, Z. Hou, X. Bu, and Q. Yu, "RBFNN-Based Data-Driven Predictive Iterative Learning Control for Nonaffine Nonlinear Systems," IEEE transactions on neural networks and learning systems, 2019.
[36] S. Zeghlache, H. Mekki, A. Bouguerra, and A. Djerioui, "Actuator fault tolerant control using adaptive RBFNN fuzzy sliding mode controller for coaxial octorotor UAV," ISA transactions, vol. 80, pp. 267-278, 2018.
[37] Z. Chen, X. Yang, and X. Liu, "RBFNN-based nonsingular fast terminal sliding mode control for robotic manipulators including actuator dynamics," Neurocomputing, vol. 362, pp. 72-82, 2019.
[38] Y. Zou, "Attitude tracking control for spacecraft with robust adaptive RBFNN augmenting sliding mode control," Aerospace Science and Technology, vol. 56, pp. 197-204, 2016.
[39] D. Devaraj and J. P. Roselyn, "On-line voltage stability assessment using radial basis function network model with reduced input features," International Journal of Electrical Power & Energy Systems, vol. 33, pp. 1550-1555, 2011.
[40] M. Á. Moreno and J. Usaola, "A new balanced harmonic load flow including non-linear loads modeled with RBF networks," IEEE Transactions on Power Delivery, vol. 19, pp. 686-693, 2004.
[41] V. Borovskiy, J. Müller, M.-P. Schapranow, and A. Zeier, "Binary search tree visualization algorithm," in 2009 16th International Conference on Industrial Engineering and Engineering Management, 2009, pp. 108-112.
[42] R. Chinnaiyan and A. Kumar, "Construction of estimated level based balanced binary search tree," in 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), 2017, pp. 344-348.
[43] R. Ramachandran, "Kakkot Tree—A Binary Search Tree with caching," in 2012 IEEE International Conference on Computational Intelligence and Computing Research, 2012, pp. 1-6.
[44] H. Liu, P. Luo, and Z. Zeng, "A structured hierarchical P2P model based on a rigorous binary tree code algorithm," Future Generation Computer Systems, vol. 23, pp. 201-208, 2007.
[45] J. Nievergelt, "Binary search trees and file organization," ACM Computing Surveys (CSUR), vol. 6, pp. 195-207, 1974.
[46] S. Nagaraj, "Optimal binary search trees," Theoretical Computer Science, vol. 188, pp. 1-44, 1997.
[47] R. Chaudhuri and H. Höft, "Splaying a search tree in preorder takes linear time," ACM SIGACT News, vol. 24, pp. 88-93, 1993.

無法下載圖示 全文公開日期 2025/07/27 (校內網路)
全文公開日期 2025/07/27 (校外網路)
全文公開日期 2025/07/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE