簡易檢索 / 詳目顯示

研究生: 丁晧洋
Hao-yang Ding
論文名稱: 計算藍寶石基板之研磨液化學反應層厚度之理論模式建立與實驗分析
Establishment of a theoretical model for calculating the thickness of chemical reaction layer of sapphire substrate to slurry and the related experimental analysis
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 許覺良
none
傅光華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 157
中文關鍵詞: 比下壓能原子力顯微鏡藍寶石基板化學反應層厚度
外文關鍵詞: specific down force energy (SDFE), atomic force microscopy (AFM), sapphire wafer, thickness of chemical reaction layer
相關次數: 點閱:204下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文創新提出受研磨液影響藍寶石晶圓基板的化學反應之估算藍寶石晶圓基板化學反應層厚度的理論模式。本文亦進行原子力顯微鏡實驗,估算不同研磨液浸泡條件之比下壓能值。本實驗之研磨液條件為研磨液浸泡時間5分鐘、10分鐘、30分鐘、60分鐘以及90分鐘、研磨液浸泡溫度20℃、30℃、40℃及50℃,研磨液體積濃度10%、20%、30%、40%及50%,以不同的研磨液浸泡條件探討研磨液化學反應對藍寶石晶圓基板之化學反應層厚度之影響。
  本研究之實驗係以較小的下壓力對浸泡前的藍寶石晶圓基板進行原子力顯微鏡加工,得出藍寶石晶圓基板未受研磨液浸泡的比下壓能值。再以較小的下壓力對浸泡不同研磨液條件的藍寶石晶圓基板進行原子力顯微鏡加工,得出藍寶石晶圓基板受研磨液浸泡後的研磨液化學反應層厚度之比下壓能值。接著,以5A的深度間隔及下壓力做原子力顯微鏡加工並觀察化學反應層比下能值,當實驗的比下壓能值從穩定後開始逐步增加,代表AFM探針已從化學反應層逐漸下壓至原材料,所以比下壓能值的變化就成為重要的目標,再以比下壓能公式為理論基礎發展出逆算化學反應層厚度之方法,計算出化學反應層厚度,以比下壓能之能量的觀念進一步逆算出藍寶石基板受研磨液化學反應之影響所產生之化學反應層厚度,最後再進行原子力顯微鏡的實驗並以1A的深度間隔做實驗加工並驗證其逆算的化學反應層厚度為可行。
  本研究以比下壓能理論公式推導建立ㄧ種創新獲得藍寶石晶圓基板化學反應厚度的計算方法,將實驗所得的藍寶石晶圓基板化學反應層厚度與其比下壓能值,進一步以逆算方法獲得的藍寶石晶圓基板化學反應層厚度相互比較驗證其差異,最後再以回歸理論分析得出在不同研磨液浸泡條件之下的化學反應層的回歸公式,其可計算出藍寶石晶圓基板化學反應層厚度。利用此回歸公式可同時估算並預測藍寶石晶圓基板浸泡於研磨液中形成化學反應層厚度所需的浸泡時間、浸泡溫度以及研磨液體積濃度。
  實驗分析結果顯示當研磨液浸泡時間增加、研磨液溫度上升以及研磨液體積濃度上升時,藍寶石晶圓基板受研磨液化學反應所形成之化學反應層會增加。學術創新部份為利用比下壓能理論逆算藍寶石晶圓基板受研磨液化學反應影響產生的化學反應層厚度,搭配回歸理論分析公式可以預測不同的研磨液浸泡條件所產生之化學反應層厚度,進一步於產業應用可使藍寶石晶圓基板在做化學機械拋光時,具有重要的參考應用價值。


The paper innovatively proposes a theoretical model for estimating the thickness of chemical reaction layer of sapphire wafer substrate, which is affected by and under chemical reaction to slurry. Atomic force microscopy (AFM) experiment is made to estimate the values of specific down force energy (SDFE) under different slurry soaking condidtions. For the conditions of slurry in the experiment, the lengths of soaking time in slurry are 5 minutes, 10 minutes, 30 minutes, 60 minutes and 90 minutes; the temperatures of slurry for soaking are 20℃, 30℃, 40℃ and 50℃; and the volume concentrations of slurry are 10%, 20%, 30%, 40% and 50%. Under different slurry soaking conditions, the paper explores the effects of chemical reaction to slurry on the thickness of chemical reaction layer of sapphire wafer substrate.
In the experiment of the study a smaller down force is used to carry out AFM cutting of sapphire wafer substrate before soaking in slurry, achieving the SDFE value of sapphire wafer substrate not being soaked in slurry. Then a much smaller down force is used to carry out AFM cutting of sapphire wafer substrate soaked in slurry under different slurry soaking conditions, obtaining the SDFE value of the thickness of chemical reaction layer of sapphire wafer substrate to slurry after substrate is soaked in slurry. After that, employing a depth interval 5A and down force to carry out AFM cutting, the paper observes the SDFE value of the chemical reaction layer. When the SDFE value in the experiment increases step by step from stability, it represents that the AFM probe has gradually pressed down from chemical reaction layer to the raw material. Therefore, the change of SDFE value becomes an important target. With SDFE equation as theoretical foundation, the paper develops an inverse calculation method of the thickness of chemical reaction layer, and calculates the thickness of chemical reaction layer. With the concept of SDFE, the paper further inversely calculates the thickness of chemical reaction layer produced on sapphire wafer substrate after being affected by chemical reaction to slurry. Finally, the paper conducts AFM experiment and takes a depth interval 1A for experimental cutting, and verifies that the method of inversely calculating the thickness of chemical reaction layer is feasible.
With SDFE theoretical equation, the study derives and establishes an innovative calculation method of the thickness of chemical reaction layer of sapphire wafer substrate. After acquiring the thicknesses of chemical reaction layer of sapphire wafer substrate and SDFE values from experiment, the paper further uses inverse calculation method to obtain the thicknesses of chemical reaction layer of sapphire wafer substrate, which is then compared with the experimental results to find the difference. Finally, using regression theoretical analysis, the paper can obtain the regression equations of the thickness of chemical reaction layer of sapphire wafer substrate under different slurry soaking conditions. Meanwhile, by using the obtained regression equation, the paper estimates and anticipates the required soaking time, temperature of slurry for soaking and volume concentration of slurry for forming a thickness of chemical reaction layer on sapphire wafer substrate after being soaked in slurry.
Experimental analysis results show that when the soaking time in slurry lengthens, slurry temperature rises and volume concentration of slurry increases, then the chemical reaction layer formed by chemical reaction of sapphire wafer substrate to slurry is increased. As to academic innovation of the study, SDFE theory is used to inversely calculate the thickness of chemical reaction layer produced by chemical reaction of sapphire wafer substrate to slurry. Besides, after it is attached with the equations regression theoretical analysis, the study can anticipate the thickness of chemical reaction layer produced by different slurry soaking conditions. Furthermore, the research results have significant referential and application values when being applied by industries to chemical mechanical polishing of sapphire wafer substrate.

摘要………………………………………………………………………I Abstract…………………………………………………………IV 目錄…………………………………………………………………VIII 圖目錄…………………………………………………………………XI 表目錄……………………………………………………………XVII 第一章 緒論………………………………………………………………………1 1.1前言………………………………………………………………………1 1.2研究動機與目的………………………………………………………………………3 1.3 文獻回顧………………………………………………………………………4 1.4 本文架構………………………………………………………………………8 第二章 實驗規劃及迴歸分析理論………………………………………………………………………10 2.1 實驗設備介紹………………………………………………………………………10 2.1.1 多模態原子力顯微鏡D3100………………………………………………………………………10 2.1.2實驗試片及探針………………………………………………………………………11 2.1.3 研磨液………………………………………………………………………13 2.1.4 酸鹼值檢測計及加熱裝置………………………………………………………………………13 2.2.1 原子力顯微鏡操作原理及下壓力量測方法………………………………………………………………………14 2.2.2 AFM探針下壓力量測方法………………………………………………………………………17 2.3 實驗規劃………………………………………………………………………20 2.4 迴歸分析理論………………………………………………………………………22 2.4.1 最小平方法(Least square method)………………………………………………………………………23 2.4.2 多元線性迴歸模型………………………………………………………………………26 2.4.3 矩陣表示法………………………………………………………………………27 2.4.4迴歸分析模型之重要指標………………………………………………………………………30 第三章 利用比下壓能理論建立浸泡研磨液之藍寶石基板化學反應層厚度之逆算計算模式…………………32 3.1 比下壓能理論模型及計算比下壓能方法………………………………………………………………………32 3.2 量測未浸泡研磨液之藍寶石基板之比下壓能值實驗………………………………………………………………………38 3.3 比下壓能理論建立逆算浸泡研磨液之藍寶石基板的化學反應層厚度之逆算計算模式……………………40 第四章 不同研磨液浸泡條件下藍寶石基板化學反應層厚度逆算結果與藍寶石基板化學反應層厚度實驗結果之分析………………………………………………………………………43 4.1 研磨液不同浸泡時間對藍寶石基板化學反應層影響之實驗 ………………………………………………………………………44 4.1.1量測藍寶石基板於研磨液不同浸泡時間產生化學反應層之比下壓能值……………………………………………44 4.1.2 逆算藍寶石基板於研磨液不同浸泡時間產生化學反應層厚度…………………………………………………………65 4.1.3 實驗驗證逆算藍寶石基板於研磨液不同浸泡時間產生之化學反應層厚度…………………………………71 4.2 研磨液不同浸泡溫度對藍寶石基板化學反應層影響之實驗…………………………………………………………77 4.2.1量測藍寶石基板於研磨液不同浸泡溫度產生化學反應層之比下壓能值………………………………………77 4.2.2 逆算藍寶石基板於研磨液不同浸泡溫度產生化學反應層厚度………………………………………92 4.2.3 實驗驗證逆算藍寶石基板於研磨液不同浸泡溫度產生化學反應層厚度………………………………………………………………………96 4.3 研磨液不同浸泡體積濃度對藍寶石基板化學反應層影響之實驗………………………………………………………………………101 4.3.1量測藍寶石基板於研磨液不同浸泡溫度產生化學反應層之比下壓能值………………………………………………………………………101 4.3.2 逆算藍寶石基板於研磨液不同浸泡溫度產生化學反應層厚度………………………………………………………………………119 4.3.3 實驗驗證逆算藍寶石基板於研磨液不同浸泡溫度產生化學反應層厚度………………………………………………………………………123 4.4 藍寶石基板化學反應層厚度實驗結果迴歸分析………………………………………………………………………128 4.4.1 研磨液不同浸泡時間之藍寶石化學反應層厚度實驗結果之迴歸分析………………………………………………………………………129 4.4.2 研磨液不同浸泡溫度之藍寶石化學反應層厚度實驗結果之迴歸分析………………………………………………………………………134 4.4.3研磨液不同浸泡體積濃度之藍寶石化學反應層厚度實驗結果迴歸分析………………………………………………………………………138 第五章 固定下壓力之研磨液不同浸泡條件之藍寶石基板化學反應層實驗與分析………………………………………………………………………142 5.1固定下壓力之研磨液不同浸泡時間之藍寶石基板化學反應層之實驗與模擬結果分析………………………………………………………………………142 5.2固定下壓力之研磨液不同浸泡溫度之藍寶石基板化學反應層之實驗與模擬結果分析………………………………………………………………………144 5.3固定下壓力之研磨液不同浸泡體積濃度之藍寶石基板化學反應層之實驗與模擬結果分析………………………………………………………………………147 5.4固定下壓力之研磨液不同浸泡條件之藍寶石基板化學反應層之pH值實驗結果分析………………………………………………………………………151 第六章 結果與討論………………………………………………………………………152 參考文獻……………………………………………………………156

[1] Binning, G., Quate, C. F. and Gerber, C.,”Atomic Force Microscope”, Physical Review Letters, Vol.56, No.6, pp.930-933 (1986).
[2] Nanjo, H., Nony, L., Yoneya, M. and Aime, J. P.,”Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-contact Situation”, Applied Surface Science, Vol.210, No.1, pp.49-53 (2003).
[3] Lubben, J. F. and Johannsmann, D., “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir, Vol.20, No.9, pp.3698-3703 (2004).
[4] Tseng, A. A., Jou, S., Notargiacomo, A. and Chen, T. P., ”Recent Developments in Tip-based Nanofabrication and Its Roadmap”, Journal of Nanoscience & Nanotechnology, Vol.8, No.5, pp.2167–2186 (2008).
[5] Fang, T. H., Weng, C. I. and Chang, J. G.,”Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol.11, No.5, pp.181-187 (2000).
[6] Yan, Y., Sun, T., Liang, Y. C. and Dong, S., “Investigation on AFM Based Micro/nano CNC Machining System”, International Journal of Machine Tools and Manufacture, Vol.47, No.11, pp.1651-1659 (2007).

[7] Tseng, A. A., “A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy”, Journal of Applied Surface Science, Vol. 256, No.13, pp.4246- 4252 (2010).
[8] Lin, Z. C. and Huang, J. C., “The Study of Estimation Method of Cutting Force for Conical Tool Under Nanoscale Depth of Cut by Molecular Dynamics”, Nanotechnology, Vol.19, No,7, pp.115701-1 ~115701-13 (2008).
[9] Nga, C. K., Melkotea, S. N., Rahmanb, M. and Kumar, A. S., “Experimental Study of Micro- and Nano-scale Cutting of Aluminum 7075-T6”, Machine Tools & Manufacture, Vol.46, No.9, pp. 929-936 (2006).
[10] Peng, P., Shi, T., Liao, G., Tang, Z., and Liu, C., “Scratch of Submicron Grooves on Aluminum Film with AFM Diamond Tip”, IEEE International Conference on Nano/Micro Engineered and Molecular Systems , Shenzhen, China, Vol.74, No.31, pp.983-986 (2009).
[11] Namba, Y. and Tsuwa, H., “Mechanism and some applications of ultra-fine finishing”, Gen Assem of CIRP, 28th, Manuf. Technol., Vol.27, No.1, pp.511-516 (1978).
[12] Luo, Q, Ramarajan, S. and Babu, S. V.,” Modification of the Preston equation for the chemical-mechanical polishing of copper”, Thin Solid Films, Vol.335, No.7, pp.160-167 (1998).
[13] Kang, Y. J., Kang, B. K. and Park, J. G.,” Effect of slurry pH on poly silicon CMP”, International Conference on Planarization/CMP Technology. Oct. 25-27 (2007).
[14] Lin, Z. C., Huang, W. S. and Tsa, J. S.,” A study of material removal amount of sapphire wafer in application of chemical polishing with different polishing pads”, Journal of Mechanical Science and Technology, Vol.26, No.8, pp.2353-2364(2012).
[15] Qin, K., Moudgil, B. and Park, C.W.,” A chemical mechanical polishing model incorporating both the chemical and mechanical effects”, Thin Solid Films , Vol.446, No.8, pp.277-286(2004).
[16] Liu, Y., Zhang, K.,Wang, F.and Di W.,” Investigation on the final polishing slurry and technique of silicon substrate in ULSI”, Microelectronic Engineering, Vol.66, No.4, pp. 438-444(2003).
[17] Kanki, T.,Kimura, T. and Nakamura, T.,” Chemical and Mechanical Properties of Cu Surface Reaction Layers in Cu –CMP to improve Planarization”, ECS Journal of Solid State Science and Trechnology, Vol.2, No.9, pp.375-P379(2013).
[18] “Digital Instruments Dimension™ 3100 Manual. Version 4.43B”, Digital Instruments Veeco Metrilogy Group, 2000.
[19] 黃韋舜,「藍寶石晶圓之化學機械拋光實驗與分析」,碩士論文,國立台灣科技大學機械工程研究所,台北市,台灣,民國九十九年。
[20] 林真真,「回歸分析」,華泰書局出版,台北市,台灣,民國八十二年七月。

無法下載圖示 全文公開日期 2019/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE