簡易檢索 / 詳目顯示

研究生: 戴久琳
Jiou-lin Dai
論文名稱: 人工髖關節骨柄之設計與材質對近端股骨之生物力學的影響
Biomechanical Influences of Stem Shapes and Materials on the Implanted Proximal Femur
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 釋高上
none
林上智
none
劉見賢
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 138
中文關鍵詞: 人工髖關節有柄式無柄式表面置換有限元素分析
外文關鍵詞: resurfaced hip joint, finite element analysis, stemmed hip joint, artificial hip joint, non-stemmed hip joint
相關次數: 點閱:148下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開發歷史超過一百年的人工髖關節,是目前所有人工關節手術中有較好之成功率的手術之一。在臨床觀察中發現,人工髖關節仍有下列兩項不良的問題:經磨耗產生之碎屑侵入骨髓腔而造成骨溶解;股骨因植入物之應力遮蔽所導致之骨鬆現象。另外針對僅股骨頭局部軟骨退化或骨質壞死的病人,卻需進行切除股骨頭及骨頸的置換手術,不僅手術時間長且骨本流失多,另外也使得未來可能的二次手術成功率降低。本論文將進行有限元素分析,探討各類型植入物之設計及材質對股骨及植入物之應力的影響,期望能更進一步了解有柄、無柄及表面置換植入物設計及材質對股骨近端的影響。
    在有限元素分析中,由電腦斷層掃描取得股骨剖面資料,再使用Amira軟體建立股骨三維實體模型,另外以SolidWorks軟體繪製相關人工髖關節植入物。將各式植入物依手術之方式植入股骨,施加身體負載及肌肉力於股骨,並固定股骨遠端,以模擬正常人單腳站立之情形。針對四種植入物材料性質(鈦合金、鈷鉻鉬合金、未強化及強化之PEEK)與各類型植入物(有柄式、無柄式及表面置換型)之不同外形設計,進行有限元素分析。從股骨von Mises應力及植入物最大主應力去探討植入物之設計及材質對股骨的影響,此外,亦從完整考慮到形變能及體變能之最大應變能密度觀點去進行探討。
    從本論文之討論中,可得到下列結論:有柄式骨柄建議使用應力遮蔽小之鈦合金材質,球頭建議使用耐磨耗之鈷鉻鉬合金材質;無柄式及表面置換型建議使用耐疲勞之鈷鉻鉬合金材質。有柄式以應力遮蔽最小且破壞機率最低之CHS設計較佳;無柄式以破壞機率最低且手術簡易之杯蓋式Money設計較佳;表面置換新型設計不僅能降低應力且破壞機率低,故較舊型好;空心骨柄設計在骨頭完全長入之情形下,其破壞機率較實心高;三大類人工髖關節中,以表面置換型之應力分佈與完整股骨最為接近;無柄骨板式植入物中,骨板上端有固定螺絲之設計可大幅降低螺絲應力。期望本論文研究之結果對改進人工髖關節之設計參考及臨床使用有所幫助。


    The replacements of artificial hip joints, historically developed over one century, have shown the most significant progress among all artificial joint surgery. But from clinical observations, there still remain two problems as follows: (1) bone marrow cavity is contaminated by debris from joint wear, and then followed by osteolysis; (2) the femur subject to stress shielding caused osteoporosis. The total hip replacement was quite time-consuming, large bone mass loss, and reduced successful rate of the revision surgery. For the patients with partial cartilage degeneration or bone necrosis, the non-stemmed or resurfacing hip replacement were invented to overcome such complications. This purpose of this study was to investigate the influences of the designs and materials of the hip prostheses on the load-transferring mechanism by finite element method. The results of the current study give further insight into the influences of the hip prostheses on the proximal femur.
    The geometry of the femur was three-dimensionally established from the computed tomography scanning images by Amira software. The solid models of the femur and the instrumented hip prostheses were created by SolidWorks software. The body load and muscle forces were applied on the femur, and the distal femur was fixed to simulate one-legged stance loading condition. For four materials of implants (Ti alloy, CoCrMo alloy, pure PEEK (Polyetheretherketone), and 30% Carbon Fiber Reinforced PEEK) and different shape designs of three kinds of implants (stemmed/non-stemmed/resurfaced hip joint), three–dimensional finite element analyses were performed using the commercial package, COSMOSWorks. The objective of this study was to respectively discuss the influences of the designs and materials of the implants on the femur using the von Mises stress criterion, and maximum tensile stress of the implant. In addition, the strain energy density (SED) criterion combined with distortional and dilatational energy was also considered.
    The results of this study suggested the following conclusions: the stems of stemmed hip joints should be made of Ti alloy with the slightest stress shielding effect, and the heads of stemmed hip joints should be made of wear-resistant CoCrMo alloy; non-stemmed and resurfaced hip joints should be made of CoCrMo alloy with good fatigue performance. The above held the best results on the CHS design with the slightest stress shielding effect and the lowest fracture rate among stemmed hip joints, and the best results on the cupped Money design with the lowest fracture rate and easy surgery among non-stemmed hip joints; the new design of the resurfaced implants was better than the old one because of decreasing the stress of the femur and implant and lower fracture rate; the fracture rate of the hollow stemmed hip joint with complete ingrowth of bone was higher than the solid one; among three types of artificial hip joint, the stress distribution of the resurfaced hip joint was the very closest to the intact; the design of the plate with proximally fixed screw of non-stemmed implant with plate could decrease substantially the stress of other screws. This study could assist the engineers to improve the design of artificial hip joints and help the surgeons select suitable artificial hip joints for their patients.

    中文摘要 英文摘要 誌 謝 目 錄 圖表索引 第一章 緒論 1.1 前言 1.2 研究目的 1.3 髖關節解剖學 1.4 人工髖關節置換手術 1.5 文獻回顧 1.6 本文架構 第二章 研究方法與材料 2.1 有限元素法介紹 2.2 實體模型之建立 2.2.1 完整股骨之模型 2.2.2 植入物固定在股骨近端之模型 2.3 有限元素參數分析 2.3.1 人工髖關節設計參數分析 2.3.2 人工髖關節材料參數分析 2.4 有限元素分析之前處理 2.4.1 材料性質 2.4.2 負載與邊界條件 2.4.3 網格型態設定 2.5 破壞理論 第三章 結果 3.1 完整股骨之分析結果 3.2 相同設計,不同材質之結果 第四章 討論 4.1 論文結果對照 4.2 探討植入物材質對股骨及植入物之影響 4.2.1 探討有柄式植入物之材質對股骨及植入物之影響 4.2.2 探討無柄式植入物之材質對股骨及植入物之影響 4.2.3 探討表面置換植入物之材質對股骨及植入物之影響 4.3 探討植入物設計對股骨及植入物之影響 4.3.1 探討有柄式植入物之設計對股骨及植入物之影響 4.3.2 探討有柄式實/空心之設計對股骨及植入物之影響 4.3.3 探討無柄式植入物之設計對股骨及植入物之影響 4.3.4 探討表面置換植入物之設計對股骨及植入物之影響 4.4 植入物類型之各方面比較 4.5 Munting與Shi之設計比較及探討 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻 作者簡介

    [1] Munting, E., and M. Verhepen, "Fixation and effect on bone strain pattern of a stemless hip prosthesis," Journal of Biomechanics, Vol. 28, pp. 949-961, 1995.
    [2] Keaveny, T.M., and D.L. Bartel, "Mechanical consequences of bone ingrowth in a hip-prosthesis inserted without cement," J Bone Joint Surg, Vol. 77A, pp. 911-923, 1995.
    [3] Maloney, W.J., C. Sychterz, and C. Bragdon, "Skeletal response to well fixed femoral components inserted with and without cement," Clin Orthop, Vol. 333, pp. 15-26, 1996.
    [4] Bugbee, W.D., W.J.II. Culpepper, and C.A.Sr. Engh, "Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement," J Bone Joint Surg, Vol. 79A, pp. 1007-1012, 1997.
    [5] Namba, R.S., J.H. Keyak, and A.S. Kim, "Cementless implant composition and femoral stress: A finite-element analysis," Clin. Orthop. Relat. Res., Vol.347, pp. 261-267, 1998.
    [6] Stolk, J., N. Verdonschot, and R. Huiskes, "Hip-Joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction," Journal of Biomechanics, Vol. 34, pp. 917-926, 2001.
    [7] Gross, S., and E.W. Abel, "A finite element analysis of hollow stemmed hip prostheses as a means of reducing shielding of the femur," Journal of Biomechanics, Vol. 34, pp. 995-1003, 2001.
    [8] Ralf, U.K., O.H. Markus, and S. Ulrich, "THA loading arising from increased femoral anteversion and offset may lead to critical cement stresses," Journal of Orthopaedic Research, Vol. 21, pp. 767-774, 2003.
    [9] Edward, E., and L. Patricia, "Normand Long-term radiographic changes in cemented total hip arthroplasty with six designs of femoral components," Biomaterials, Vol. 24, pp. 3351-3363, 2003.
    [10] Duda GN, Schneider E, Chao EY, "Internal forces and moments in the femur during walking," Journal of Biomechanics, Vol.30, pp. 933-41, 1997.
    [11] MatWeb網站 http://www.matweb.com/
    [12] VICTREX PEEK材料特性手冊,第5~7頁,VICTREX原廠網址:http://tc.victrex.com/
    [13] 黃啟仲、陳偉淦等,大體解剖學,第454~457頁,台北,藝軒圖書出版社,民國七十七年。
    [14] Brand RA, Pedersen DR, and Friederich JA, "The sensitivity of muscle force predictions to changes in physiologic cross-sectional area," Journal of Biomechanics, Vol. 19, pp. 589-96, 1986.
    [15] Brand RA, Crowninshield RD, Wittstock CE, Pedersen DR, Clark CR, van Krieken FM, "A model of lower extremity muscular anatomy," Journal of Biomechanical Engineering, Vol.104, pp. 304-310, 1982.
    [16] Duda GN, Brand D, Freitag S, Lierse W, Schneider E, "Variability of femoral muscle attachments," Journal of Biomechanics, Vol.29, pp. 1185-90, 1996.
    [17] Pedersen DR, Brand RA, Cheng C, Arora JS, "Direct comparison of muscle force predictions using linear and nonlinear programming," Journal of Biomechanical Engineering, Vol. 109, pp. 192-9, 1987.
    [18] Makarand G. Joshi, Suresh G. Advani, Freeman Miller, "Analysis of a femoral hip prosthesis designed to reduce stress shielding," Journal of Biomechanics, Vol. 33, pp. 1655-1662, 2000.
    [19] WRIGHT原廠網站 http://www.wmt.com/
    [20] 劉育良,「無股骨柄式人工髖關節之有限元素分析」,私立中原大學碩士論文,民國九十年。
    [21] Chun-Hsiung Shih, Weng-Pin Chen, and Ching-Lung Tai, "New concepts -- biomechanical studies of a newly designed femoral prosthesis (cervico-trochanter prothesis)," Clinical Biomechanics, Vol. 12, No. 7/8, pp. 482-490, 1997.
    [22] 劉俊平,「全人工髖關節股骨柄設計參數之生物力學分析」,私立中原大學碩士論文,民國八十八年。
    [23] 羅勝育,「人工髖關節置換對近端股骨應力分佈影響之有限元素分析」,國立台灣科技大學機械工程系研究所碩士論文,民國九十三年。

    QR CODE