簡易檢索 / 詳目顯示

研究生: 林芳鈺
Fang-Yu Lin
論文名稱: 垂直不穩定型骨盆骨折治療之生物力學評估與自動化軟組織建置程式開發
Biomechanical Evaluation of Treatment for Vertically Unstable Pelvic Fractures and Development of Automated Spring Generator for the Modeling of Human Soft Tissue
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 釋高上
Kao-Shang Shih
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 垂直不穩定型骨盆骨折有限元素分析ANSYS ACT程式開發
外文關鍵詞: Vertically unstable pelvic fractures, Finite element analysis, ANSYS ACT development
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨盆將上半身的力量傳遞至下肢,因此骨盆為人類肌肉骨骼系統中承受壓力最大的骨骼之一,若骨盆骨折可能導致關節異常和骨盆不穩定。先前文獻使用體內或體外實驗評估和討論各種固定技術,由於骨質、骨骼解剖結構、骨折模式和固定位置的變化,可能難以公平研究每種固定方式,而有限元素方法可避免變異性的問題,此外,先前的大多數研究在評估骨盆的生物力學時忽略腰椎和股骨的影響,因此本研究的目的是使用有限元素分析法探討完整、骨折和治療的骨盆模型,其在七種不同脊椎姿勢的生物力學性能。
    本研究建立了具有肌肉和韌帶的脊椎-骨盆-股骨的三維有限元素模型,分析並討論完整的骨盆、垂直不穩定型骨盆骨折和八種骨折治療方法,骨折治療包括:上方骨螺絲固定、下方骨螺絲固定、雙骨螺絲固定、上方鎖定式骨板固定、下方鎖定式骨板固定、雙鎖定式骨板固定、上方骨螺絲結合下方鎖定式骨板及上方鎖定式骨板結合下方骨螺絲,分析七種脊椎姿勢對治療的影響。其中在設定邊界負載條件,以ANSYS ACT二次開發程式自動化建立彈簧等效人體肌肉與韌帶。在後處理中,計算骨盆固定穩定性、骨盆最大應力和植入物最大應力。
    數值結果顯示,雙骨螺絲固定和上方骨螺絲結合下方鎖定式骨板具有較佳固定穩定性。雙骨螺絲固定方式與雙鎖定式骨板固定方式具可接受的固定穩定性、植入物應力和骨盆應力,患者於治療時應避免前彎、右側彎及左側彎等脊椎姿勢。這項研究可幫助外科醫生了解骨盆的生物力學性能,也可用於評估不同的骨盆損傷。


    The pelvis is one of the most stressed areas of the human musculoskeletal system due to the transfer of truncal loads to the lower extremities. Pelvic fracture may lead to abnormal joint mechanics and an unstable pelvis. Various fixation techniques have been evaluated and discussed using in-vivo or in-vitro experiments. However, it may be difficult to investigate each technique due to variations in bone quality, bone anatomy, fracture pattern, and fixation location. Additionally, the finite element method is one useful technique that avoids these variations. Unfortunately, most previous studies neglected the effects of the lumbar spine and femurs when they investigated the biomechanics of pelvises. Thus, the aim of this study was to investigate the biomechanical performance of intact, injured, and treated pelvises on seven different spinal postures using finite element analysis.
    Three-dimensional finite element models of the spine-pelvis-femur complex with muscles and ligaments were developed. The intact pelvis, the vertically unstable pelvis, and eight types of the fracture treatments were analyzed and discussed. The fracture treatments included the upper screw fixation, lower screw fixation, two screw fixation, upper locking plate fixation, lower locking plate fixation, two locking plate fixation, upper locking plate combined with lower screw fixation and upper screw with lower locking plate fixation. The effects of seven different spinal postures on the treatments were also analyzed. ANSYS ACT was used to automatically build springs to model human muscles and ligaments. In postprocessing, the pelvic stability, the implant stress, and the pelvic stress were calculated.
    The numerical results showed that two screw fixation and the upper screw fixation combined with lower locking plate have the better stability. Two screw fixation and two locking plate have acceptable fixation stability, lower implant stress, and lower pelvic stress compared to the other fixation techniques. All the treatment techniques could improve the instability of the fracture model. The musculoskeletal model with the left and right lateral bending showed weaker fixation stability. The left lateral bending and flexion posture showed higher implant and pelvic stress compared to the other spinal postures. This study can help surgeons and engineers understand the biomechanics of intact, injured, and treated pelvises. The numerical technique can also be applied to evaluate different pelvic injuries.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究背景、動機與目的 1 1.2 人體脊椎、骨盆與股骨介紹 4 1.2.1 人體脊椎、骨盆與股骨骨骼介紹 5 1.2.2 人體脊椎、骨盆與股骨節段軟組織介紹 9 1.3 骨盆骨折原因 12 1.4 骨盆骨折分類 13 1.5 骨盆骨螺絲 (Screw Fixation)與骨板 (Locking Plate)介紹 16 1.6 ANSYS ACT (Application Customization Toolkit)介紹 18 1.7 文獻回顧 19 1.8 本文架構 27 第二章 材料與方法 28 2.1 研究程序 28 2.2 脊椎-骨盆-股骨骨骼實體模型建立 29 2.2.1 垂直不穩定骨盆骨折及其不同治療模型建立 30 2.3 有限元素模擬分析 33 2.3.1 材料參數 33 2.3.2 接觸條件設定 35 2.3.3 以ANSYS ACT程式開發工具建立軟組織 37 2.3.4 網格劃分方法與網格大小 44 2.3.5 邊界負載條件設定 46 2.3.6 數值模擬結果評估 48 第三章 結果 49 3.1 收斂性分析結果 51 3.2 垂直不穩定型骨折固定穩定度結果 55 3.3 垂直不穩定型骨盆骨應力結果 57 3.4 垂直不穩定型植入物應力結果 59 3.5 以ANSYS ACT程式開發工具建立軟組織結果 61 第四章 討論 62 4.1 垂直不穩定型骨折固定穩定度結果討論 62 4.2 垂直不穩定型骨盆骨應力結果討論 63 4.3 垂直不穩定型植入物應力結果討論 63 4.4 以ANSYS ACT程式開發工具建立軟組織結果討論 64 4.5 研究限制 65 第五章 結論與未來展望 66 5.1 結論 66 5.2 未來展望 67 參考文獻 68 附錄一 ANSYS ACT 開發自動化足底壓力產生工具 71

    [1]黃柏盛,不同脊椎姿勢對於骨盆不穩定骨折治療之生物力學研究(未出版之碩士論文,國立臺灣科技大學,臺北市(2017)。
    [2]Wikipedia-Pelvis(2018), https://en.wikipedia.org/wiki/Pelvis.
    [3]Durkin, A., Sagi, H.C., Durham, R. and Flint, L., "Contemporary management of pelvic fractures," The American Journal of Surgery. 192(2): pp. 211-223(2006).
    [4]Papathanasopoulos, A., Tzioupis, C., Giannoudis, V.P., Roberts,C. and Giannoudis, P.V., "Biomechanical aspects of pelvic ring reconstruction techniques: Evidence today," Injury. 41(12): pp. 1220-7(2010).
    [5]Muscolino, J.E., "Kinesiology - E-Book: The Skeletal System and Muscle Function,"(2014).
    [6]Jouria, J.M., "Clinical Applications of Human Anatomy and Physiology for Healthcare Professionals," pp. 86-89(2018).
    [7]Hansen, J.T., "Anatomy Flash Cards,"(2008).
    [8]Alcamo, I.E., "Anatomy Coloring Workbook,"(2003).
    [9]Frey, G.A., "Understanding Spinal Anatomy: Ligaments, Tendons and Muscles," (2016).
    [10]Bony Pelvis Anatomy(2016), https://boneandspine.com/bony-pelvis-anatomy/.
    [11]Patton, K.T., "PART - Anatomy and Physiology,"(2015).
    [12]Alton, T.B. and Gee, A.O., "Classifications in brief: young and burgess classification of pelvic ring injuries," Clinical Orthopaedics and Related Research. 472(8): pp. 2338-42(2014).
    [13]Haq, R.U., Dhammi, I.K. and Srivastava, A., "Classification of pelvic fractures and its clinical relevance," Journal of Orthopaedics, Traumatology and Rehabilitation. 7 (1): pp. 8-13(2014).
    [14]McRae, R. and Esser, M., "Practical Fracture Treatment E-Book,"(2008).
    [15]Kanakaris, N.K. and Giannoudis, P.V., "Trauma and Orthopaedic Classifications: A Comprehensive Overview," Springer,(2014).
    [16]Simonian, P.T., Chip Routt, M.L., Harrington, R.M. and Tencer, A.F. , "The unstable iliac fracture- a biomechanical evaluation of internal fixation," Injury. 28(7): pp. 469-475(1997).
    [17]"Lecture 01- ACT Basics," ANSYS, Inc: pp. 3-6(2016).
    [18]Chen, X. and Liu, Y., "Finite Element Modeling and Simulation with ANSYS Workbench,"(2014).
    [19]Garcı´a, J.M. and Doblar´e, M., "Three-Dimensional Finite Element Analysis of Several Internal and External Pelvis Fixations," Journal of Biomechanical Engineering. 122(5): pp. 516-522(2000).
    [20]Bodzay, T., Floris, I. and Varadi, K., "Comparison of stability in the operative treatment of pelvic injuries in a finite element model," Archives of Orthopaedic and Trauma Surgery. 131(10): pp. 1427-33(2011).
    [21]Bohme, J., Shim, V., Hoch, A., Mutze, M., Muller, C. and Josten, C., "Clinical implementation of finite element models in pelvic ring surgery for prediction of implant behavior: a case report," Clinical Biomechanics. 27(9): pp. 872-8(2012).
    [22]Zhang, L., Peng, Y., Du, C. and Tang, P., "Biomechanical study of four kinds of percutaneous screw fixation in two types of unilateral sacroiliac joint dislocation: a finite element analysis," Injury. 45(12): pp. 2055-9(2014).
    [23]Yu, K.H., Hong, J.J., Guo, X.S. and Zhou, D.S., "Comparison of reconstruction plate screw fixation and percutaneous cannulated screw fixation in treatment of Tile B1 type pubic symphysis diastasis: a finite element analysis and 10-year clinical experience," Journal of Orthopaedic Surgery and Research. 10: pp. 151(2015).
    [24]Fan, Y., Lei, J., Zhu, F., Li, Z., Chen, W. and Liu, X., "Biomechanical Analysis of the Fixation System for T-Shaped Acetabular Fracture," Computational and Mathematical Methods in Medicine. 2015: pp. 370631(2015).
    [25]Shim, V., Gather, A., Hoch, A., Schreiber, D., Grunert, R., Peldschus, S., Josten, C. and Bohme, J., "Development of a Patient-Specific Finite Element Model for Predicting Implant Failure in Pelvic Ring Fracture Fixation," Computational and Mathematical Methods in Medicine. 2017: pp. 9403821(2017).
    [26]黃柏元,不穩定型骨盆骨折以不同骨折固定術治療之生物力學研究:使用三維非線性薦骨-骨盆-股骨骨骼系統模型與生物力學實驗(未出版之碩士論文),國立臺灣科技大學,臺北市(2015)。
    [27]Wu, T., Ren, X., Cui, Y., Cheng, X., Peng, S., Hou, Z. and Han, Y., "Biomechanical study of three kinds of internal fixation for the treatment of sacroiliac joint disruption using biomechanical test and finite element analysis," Journal of Orthopaedic Surgery and Research. 13(1): pp. 152(2018).
    [28]張智凱,擬真人體脊椎側彎模型於脊椎矯正治療手術之生物力學研究(未出版之碩士論文),國立臺灣科技大學,臺北市(2018)。
    [29]Netter, F.H., "Atlas of Human Anatomy,"(2010).
    [30]Goel, V.K., Monroe B.T., Gilbertson L.G. and Brinckmann P., "Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads," Spine. 20(6): pp. 689-698(1995).
    [31]Phillips, A.T., Pankaj, P., Howie, C.R., Usmani, A.S. and Simpson, A.H., "Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions," Medical Engineering & Physics. 29(7): pp. 739-48(2007).
    [32]Hammer, N., Steinke, H., Lingslebe, U., Bechmann, I., Josten, C., Slowik, V. and Bohme, J., "Ligamentous influence in pelvic load distribution," The Spine Journal. 13(10): pp. 1321-30(2013).
    [33]Clausen, J.D., Goel, V.K., Traynelis, V.C. and Scifert, J. , "Uncinate Processes and Luschka Joints Influence the Biomechanics of the Cervical Spine: Quantification Using a Finite Element Model of the C5C6 Segment," Journal of Orthopaedic Research. 15(3): pp. 342-347(1997).
    [34]Ha, S.K., "Finite element modeling of multi-level cervical spinal segments (C3-C6) and biomechanical analysis of an elastomer-type prosthetic disc," Medical Engineering & Physics. 28(6): pp. 534-41(2006).
    [35]Goodno, B.J. and Gere, J.M., "Mechanics of materials,"(2013).
    [36]Faizan, A., Goel, V.K., Garfin, S.R., Bono, C.M., Serhan, H., Biyani, A., Elgafy, H., Krishna, M. and Friesem, T., "Do design variations in the artificial disc influence cervical spine biomechanics? A finite element investigation," European Spine Journal. 21 Suppl 5: pp. S653-62(2012).
    [37]Faizan, A., Goel, V.K., Biyani, A., Garfin, S.R. and Bono, C.M., "Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study," Clinical Biomechanics. 27(3): pp. 226-33(2012).
    [38]Kim, J.E., Li, Z., Ito, Y., Huber, C.D., Shih, A.M., Eberhardt, A.W., Yang, K.H., King, A.I. and Soni, B.K., "Finite element model development of a child pelvis with optimization-based material identification," Journal of Biomechanics. 42(13): pp. 2191-5(2009).
    [39]Shih, K.S., Hsu C.C., Zhou S.Y. and Hou S.M., "Biomechanical investigation of pedicle screw-based posterior stabilization systems for the treatment of lumbar degenerative disc disease using finite element analyses," Biomedical Engineering: Applications, Basis and Communications. 27(6): pp. 1550060 (10 pages)(2015).

    無法下載圖示 全文公開日期 2024/07/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE