簡易檢索 / 詳目顯示

研究生: 詹翔安
XIANG-AN ZHAN
論文名稱: 四自由度共路徑式線性光學尺之開發
Development of a Four-Degree-of- Freedom Common Path Linear Encoder
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 許正治
Cheng-Chih Hsu
李朱育
Ju-Yi Lee
鄧昭瑞
Geo-Ry Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 線性光學尺位移旋轉角四自由度
外文關鍵詞: Linear encoder, displacement, rotation, four-degree-of-freedom
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一套創新的四自由度共路徑式線性光學尺,具備同時量測面內或面外的位移及旋轉角量測能力。此套線性光學尺結合干涉術、光柵干涉術、分光技術及共路徑式光路等技術優勢進行系統開發,具備高靈敏度、高穩定度、高容忍度、精密的位移量測和自行校正能力,且已成功將系統微小化。
    此套四自由度共路徑式線性光學尺,其系統光路架構簡單、架設快速和低成本的優勢。此外,只需要一個稜鏡和光柵的組合便可得到面內或面外的位移資訊。此套系統以「共路徑式光路」為設計核心,主要是藉由稜鏡角度的設計,使雷射光源入射至稜鏡後,會產生一道穿透光P光及一道折射光R光,並以斜向入射的方式入射至光學尺尺身(光柵),會使得穿透光P光及折射光R光的繞射光相互疊合形成干涉,當光柵產生面內或面外位移時,我們藉由光偵測器接收干涉訊號的相位變化,進而回推光柵之物理量。為了進一步提升此系統的量測能力,我們利用分光的技術,讓系統於光柵上形成兩個偵測點,使此套線性光學尺系統可以同時量測位移及旋轉角,並且能夠自行補償因旋轉角對量測所造成的誤差,賦予系統具備自行校正能力。
    由實驗結果證明,此套四自由度共路徑式線性光學尺的位移與旋轉角的解析度分別可達10 nm與200 nrad,重複度可達3.6 nm 與71 nrad,穩定度於30分鐘內之條件下優於30 nm與1000 nrad,速度極限可達8800 μm/s,具備優異的量測性能及商品化之開發潛力,可廣泛應用於各式需精密量測的場合中。


    An innovative four-degree-of-freedom common path linear encoder with the ability to simultaneously measure both in and out of plane displacements and rotations is proposed in this study. This linear encoder combines the advantages of interferometry, grating interferometry, beam splitting techniques and common optical path design to develop a system with high sensitivity, high stability, high tolerance, precise displacement measurement and self-correction capability, and has been successfully miniaturized.
    The four-degree-of-freedom common path linear encoder has the advantages of simple configuration, quick set up and low cost. In addition, only one set of prism and grating is needed to obtain both in-plane and out-of-plane displacement information. The system is designed around the core of a common optical path configuration, focusing mainly on the angle of the prism. This causes the laser light source entering the prism to split into a transmission P beam and a refracted R beam. The P and R beam are then incident onto the optical scale (grating) at an oblique angle and diffracted, causing the diffracted P and R beams to overlap forming interference. When the grating is displaced in and in-plane or out-of-plane direction, the phase change of the interference signal received by a photodetector can be used to obtain the grating displacement value. To further enhance the measurement capability of this system, beam splitting was utilized to form two detection points on the grating, allowing the linear encoder system to measure displacement and rotation simultaneously, while compensating for measurement alignment errors, and give the system the ability to self-correct.
    The experimental results show that the resolution of the displacement and rotation angle of the four-degree-of-freedom common path linear optical scale can reach 10 nm and 200 nrad, respectively. The repetition rate can reach 3.6 nm and 71 nrad, and the stability is within 30 minutes. Under the condition of better than 30 nm and 1000 nrad, the speed limit can reach 8800 μm/s. It has excellent measurement performance and potential of commercial development, and can be widely used in various occasions where precision measurement is required.

    摘要 I Abstract II 致謝 IV 符號說明 V 目錄 VIIII 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1研究背景 1 1.2 文獻回顧 2 1.2.1 干涉式線性光學尺之文獻回顧 2 1.2.2 影像式線性光學尺之文獻回顧 7 1.2.3 商用光學尺之文獻回顧 11 1.3 研究目的 16 1.4 論文架構 17 第二章 基礎理論 19 2.1 干涉術 19 2.2 光柵干涉術 20 2.2.1 光柵位移量測原理 20 2.2.2 干涉式線性光學尺 21 2.3 斯涅耳定律 23 2.4線性光學尺之多自由度量測 24 2.4.1 四象限感測器(QPD)之量測原理 25 2.4.2 位置感測器(PSD)之量測原理 26 2.4.3 兩偵測點之量測原理 28 2.5 共路徑式線性光學尺 29 2.6 干涉訊號相位解調 31 2.7 小結 32 第三章 共路徑式線性光學尺 34 3.1 共路徑式線性光學尺之設計原理 34 3.1.1 自行設計稜鏡之光學元件特性 34 3.1.2 共路徑式光學尺 35 3.2 雙自由度共路徑式線性光學尺 36 3.2.1 面內量測原理 36 3.2.2 面外量測原理 38 3.3 四自由度共路徑式線性光學尺量測原理 39 3.3.1 面內旋轉角之量測原理 39 3.3.2 面外旋轉角之量測原理 42 3.4 相位解調系統 43 3.5 讀頭機構設計 44 3.6 系統所需之光學元件&實驗儀器 45 3.7 小結 46 第四章 實驗結果與討論 48 4.1雙自由度(x, z)位移量測實驗 48 4.1.1 x軸向之位移量測 48 4.1.2 z軸向之位移量測 52 4.2四自由度(x, y, θx, θz)量測實驗 54 4.2.1 θz面內旋轉角之位移量測 54 4.2.2 θx面外旋轉角之位移量測 56 4.3 光學尺讀頭之容忍度試驗 58 4.3.1 θz面內旋轉角之位移量測 59 A 俯仰(Pitch) 60 B 偏航(Yaw) 61 C 翻滾(Roll) 62 4.3.2 θx面外旋轉角之位移量測 63 4.4 量測系統性能測試與討論 64 4.4.1 解析度量測 65 4.4.2 重複度量測 68 4.4.3 穩定度量測 70 4.4.4 隨機波實驗 71 4.4.5 量測速度極限 73 4.5 小結 74 第五章 誤差分析 75 5.1 系統誤差 75 5.1.1 光學尺尺身和讀頭之對位誤差對於位移量測的影響 76 5.1.2 光學尺尺身和讀頭之對位誤差對於旋轉角量測的影響 77 5.1.3 光學尺尺身和讀頭之間距對於系統量測的影響 78 5.2 隨機誤差 78 5.2.1 外界環境擾動 79 5.2.2 材料熱膨脹係數造成的影響 79 5.2.3 電子雜訊的影響 80 5.3稜鏡加工誤差 80 5.4小結 81 第六章 結論與未來展望 82 6.1 結論 82 6.2 未來展望 83 參考文獻 85

    1. 經濟部統計處:
    https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?
    kind=9&html=1&menu_id=18808&bull_id=5503
    2. Renishaw: https://www.renishaw.com.tw/
    3. HEIDENHAIN:https://www.heidenhain.tw/z
    4. JENE: http://www.contelec.ch
    5. Mitutoyo: https://www.mitutoyo.com/
    6. MACOME :https://www.macome.co.jp/
    7. Celera Motion :https://www.celeramotion.com/
    8. C. Lee, C. Wu, S. Chen, L. Yu, Y. Chang, Y. Wang, J. Chen, and J. Wu,
    "Design and construction of linear laser encoders that possess high
    tolerance of mechanical runout," Appl. Opt. 43, 5754-5762 (2004).
    9. C. C. Wu, C. K. Lee, S. S. Lu, W. J. Chen, C. S. Yang, and C. T. Hsieh,
    "Diffractive laser optical encoder with high tolerance to high‐speed
    mechanical runout," Journal of the Chinese Institute of Engineers, vol.
    24, no. 4, pp. 419-429, 2001
    10. D. Shu, E. E. Alp, J. Barraza, T. M. Kuzay, and T. M. Mooney, "Novel
    laser Doppler linear encoder using multiple-reflection optical design for
    a high-resolution linear actuator," in Current Developments in Optical
    Design and Engineering VII, vol. 3429, pp. 284-293,1998
    11. C.-C. Wu, W.-J. Wu, Z.-S. Pan, and C.-K. Lee, "Laser linear encoder with
    both high fabrication and head-to-scale tolerances," Applied optics,
    vol. 46, no. 16, pp. 3169-3176, 2007.
    12. 古達之,籍由飛秒雷射直接寫入方法來設計以及編造光學線性編碼器,國立
    台灣科技大學,博士論文,2017
    13. A. Kimura, W. Gao, Y. Arai, and Z. Lijiang, "Design and construction of a
    two-degree-of-freedom linear encoder for nanometric measurement of
    stage position and straightness," Precision Engineering, vol. 34, no. 1,
    pp. 145-155, 2010.
    14. C.-H. Liu and C.-H. Cheng, "Development of a grating basedmulti-
    degree-of-freedom laser linear encoder using diffracted light,"
    Sensors and Actuators A: Physical, vol. 181, pp. 87-93, 2012.
    15. H.-L. Huang, C.-H. Liu, W.-Y. Jywe, M.-S. Wang, and T.-H. Fang,
    "Development of a three-degree-of-freedom laser linear encoder for
    error measurement of a high precision stage," Review of scientific
    instruments, vol. 78, no. 6, p. 066103, 2007
    16. G. Ye et al., "Design and development of an optical encoder with sub-
    micron accuracy using a multiple-tracks analyser grating," Review of
    Scientific Instruments, vol. 88, no. 1, p. 015003, 2017.
    17. G. Ye, H. Liu, Y. Ban, Y. Shi, L. Yin, and B. Lu, "Development of a
    reflective optical encoder with submicron accuracy," Optics
    Communications, vol. 411, pp. 126-132, 2018.
    18. C.-F. Kao and M.-H. Lu, "Optical encoder based on the fractional Talbot
    effect," Optics Communications, vol. 250, no. 1-3, pp. 16-23, 2005.
    19. C.-F. Kao and S.-H. Lu, "Reflective-type optical encoder based on
    fractional Talbot self-image effect using phase grating," in Sixth
    International Symposium on Precision Engineering Measurements and
    Instrumentation, vol. 7544, p. 75440N: International Society for Optics
    and Photonics, 2010.
    20. J.-H. Song, K.-C. Kim, and S. H. Kim, "Reducing tilt errors in moiré
    linear encoders using phase-modulated grating," Review of scientific
    instruments, vol. 71, no. 6, pp. 2296-2300, 2000.
    21. H.-S. Lee and S.-S. Lee, "Reflective optical encoder capitalizing on an
    index grating imbedded in a compact smart frame," IEEE Photonics
    Journal, vol. 6, no. 2, pp. 1-8, 2014.
    22. H. Miyajima, E. Yamamoto, and K. Yanagisawa, "Optical micro encoder
    using a twin-beam VCSEL with integrated microlenses," in Proceedings
    of International Solid State Sensors and Actuators Conference
    (Transducers' 97), IEEE, vol. 2, pp. 1233-1235, 1997.
    23. Y. Matsuzoe, K. Koizumi, T. Saitoh, and T. Yoshizawa, "Optimizing
    design of high-resolution optical encoder using a point-source light-
    emitting diode with slits," Optical Engineering, vol. 44, no. 1, p. 013609,
    2005
    24. H. Wang et al., "Absolute optical imaging position encoder,"
    Measurement, vol. 67, pp. 42-50, 2015
    25. J. Carr et al., "Miniaturised optical encoder for ultra precision
    metrology systems," Precision engineering, vol. 33, no. 3, pp. 263-267,
    2009.
    26. Rineshaw: https://www.renishaw.com.tw/
    27. Rineshaw: https://www.renishaw.com.tw/
    28. Rineshaw: https://www.renishaw.com.tw/
    29. Wotton-under-Edge,Gloucestershire“optical element” U.S. Patent
    No.20150308865 A1, 2013
    30. H.michael ,H.felwolfgang “Position measuring instrument” U.S. Patent
    No. 20060180748A1, 2006
    31. H.michale ,H.alen ,G.robert“Position Determination system”E.P. Patent
    No. 136046B1,2002
    32. Ishizuka, K. and Nishimura, T. “Encoder with high resolving power and
    curacy,” U.S. Patent No. 5,4164,085, 1992
    33. C.-C. Wu, Y.-Z. Chen, and C.-H. Liao, "Common-path laser planar
    encoder," Optics express, vol. 21, no. 16, pp. 18872-18883, 2013.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 2024/08/27 (校外網路)
    全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE