簡易檢索 / 詳目顯示

研究生: 李孟原
Meng-Yuan Lee
論文名稱: 應用集成學習於電力變壓器油中氣體狀態評估
Application of Ensemble Learning to Condition Assessment of Dissolved Gas in Insulating Oil for Power Transformers
指導教授: 陳坤隆
Kun-Long Chen
口試委員: 關錦龍
Jin-Lung Guan
陳俊隆
Chun-Lung Chen
張建國
Chien-Kuo Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 油中氣體分析電力變壓器OLTC集成學習隨機森林故障診斷
外文關鍵詞: dissolved Gas analysis, power transformers, OLTC, ensemble learning, random forest, fault diagnosis
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電力變壓器中,絕緣油主要用來絕緣和冷卻繞組與鐵心。當變
    壓器發生故障時,壓力或溫度的變化會導致油中產生氣體。透過分析
    油中的氣體,可以有效地檢測變壓器內部的狀態,並診斷可能的故障
    。然而,傳統的油中氣體分析方法存在許多局限性,例如需要大量的
    時間和成本、需要專業的技能和設備、受到環境因素的影響等等。因
    此,本論文提出了一種基於集成學習的變壓器油中氣體狀態評估方法
    ,以提高檢測的效率和準確性。本研究運用了集成學習的方法,利用
    多個模型進行診斷,以減少模型產生誤差。其中,隨機森林是最為常
    用的一種模型。在數據蒐集和預處理方面,本研究選用了包括遺漏值
    填充、樣本平衡等在內的一系列技術來提高模型的穩定性和準確性。
    本論文還將有載分接頭切換器(OLTC)對變壓器的影響納入了考
    慮,針對變壓器油中氣體檢測結果進行了進一步的分析。透過將具
    OLTC 之變壓器與一般變壓器分開討論,從而更加準確地診斷可能的
    故障。本論文使用了多個實驗來試驗該方法的有效性和可行性,結果
    顯示其具有良好的油中氣體的狀態評估能力。最終本論文提出了一種
    基於集成學習的變壓器油中氣體狀態評估方法,針對現有方法的局限
    性進行了改進和優化,並將OLTC 的影響納入了考量,從而提高了檢
    測的準確性和可靠性。


    In power transformers, insulating oil is one of the important elements
    used for insulation and cooling. When a transformer fails, changes in
    pressure or temperature can cause Gases to form in the oil. By analyzing
    the Gas in the oil, the internal health conditions of the transformer can be
    effectively detected, and possible faults can be predicted. However,
    traditional methods of analyzing Gas in oil have many limitations, such as
    requiring a lot of time and cost, requiring professional skills and
    equipment, and being influenced by environmental factors. Therefore, this
    paper proposes a transformer oil Gas state evaluation method based on
    ensemble learning to improve detection efficiency and accuracy. This study
    uses ensemble learning to reduce model bias and variance by using
    multiple models for prediction, with random forest being the most
    commonly used model. In terms of data collection and preprocessing, a
    series of techniques including missing value filling and sample balancing
    were used to improve model stability and accuracy.
    This paper also considers the impact of OLTC (on-load tap changer)
    on transformers and conducts further analysis of the results of Gas
    detection in transformer oil. By discussing OLTC separately from general
    transformers, possible faults can be predicted more accurately. This paper
    uses multiple experiments to verify the effectiveness and feasibility of the
    proposed method, which shows good results. This paper proposes a
    transformer oil Gas state evaluation method based on ensemble learning,
    which improves and optimizes the limitations of existing methods and
    considers the impact of OLTC, thereby improving the accuracy and
    reliability of detection.

    摘要 I Abstract III 目錄 V 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 論文架構 2 1.4 文獻探討 3 第二章 變壓器油中氣體診斷方法與相關標準 9 2.1 變壓器油中氣體檢測方法 9 2.1.1 氣相層析法(Gas Chromatography) 9 2.1.2 氫氣在線 10 2.1.3 光聲光譜(Photoacoustic Spectroscopy) 11 2.1.4 小結 12 2.2 油中氣體分析診斷相關標準 13 2.2.1 IEEE及IEC之相關診斷法 15 2.2.1.1 IEEE C57.104油中氣體事前程序解釋 16 2.2.1.2 IEEE 主要氣體法(Key Gas) [1] 20 2.2.1.3 IEEE Rogers Ratios[1] 21 2.2.1.4 IEEE Doernenburg Ratios[1] 22 2.2.1.5 IEC Basic Gas Ratios[23] 23 2.2.1.6 IEC Duval Triangles and Duval Pentagons 24 2.2.2 台電標準 27 2.2.3 日本電氣協同診斷法 28 2.2.3.1 總量診斷法 28 2.2.3.2 樣相診斷 29 2.2.4 IEC OLTC相關標準[23] 31 2.3 人工智慧分析與診斷技術 32 第三章 使用集成學習進行油中氣體狀態評估 35 3.1 集成學習方法及應用 35 3.1.1 Bagging (Bootstrap Aggregating) 35 3.1.2 Boosting 36 3.1.3 Stacking(Stacked Generalization) 38 3.1.4 隨機森林(Random Forest) 40 3.2 機器學習之數據事前蒐集與分析 42 3.3 數據預處理與架構設計 43 第四章 變壓器油中氣體故障檢測案例分析 46 4.1 基於集成學習的變壓器故障診斷模型實驗結果與分析 46 4.1.1 以Gas%輸入神經網路診斷三種狀態之結果 46 4.1.2 以Gas%輸入神經網路診斷七種狀態之結果 48 4.1.3 以 Gas Ratio 輸入神經網路診斷三種狀態之結果 49 4.1.4 以 Gas Ratio 輸入神經網路診斷七種狀態之結果 50 4.1.5 以 Gas Ratio 輸入K-means診斷三種狀態之結果 51 4.1.6 以Gas%輸入集成學習診斷三種狀態之結果 52 4.1.7 以Gas%輸入集成學習診斷七種狀態之結果 53 4.1.8 以Gas Ratio輸入集成學習診斷三種狀態之結果 54 4.1.9 以Gas Ratio輸入集成學習診斷七種狀態之結果 55 4.1.10 以Gas%輸入倒傳遞神經網路診斷三種狀態之結果 56 4.1.11 以Gas%輸入倒傳遞神經網路診斷七種狀態之結果 57 4.1.12 Gas Ratio輸入倒傳遞神經網路診斷三種狀態之結果 58 4.1.13 Gas Ratio輸入倒傳遞神經網路診斷七種狀態之結果 59 4.1.14 Keras 實作結果 60 4.1.15 小節 61 4.2 實際案例實測與診斷優化技術 62 4.2.1 案例實測 62 4.2.2 診斷優化法 64 第五章 具OLTC變壓器油中氣體檢測結果 69 5.1 具OLTC變壓器數據預處理與結果 69 第六章 結論與未來研究方向 80 6.1 結論 80 6.2 未來研究方向 81 參考文獻 82

    [1] IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers, IEEE Std C57.104-2019, Nov. 2019.
    [2] J. Li, J. Zhao, R. Zheng, and Y. Liu, “Fault diagnosis system of transformer based on GAS chromatography,” in Proc. 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, Aug. 2006.
    [3] T. C. Garg and E. Huber, “Online monitoring prevented catastrophic failure of a GSU transformer,” in Proc. Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference, Indianapolis, IN, USA, Sept. 2003.
    [4] T. Yang and W. Chen, “Detection of dissolved gas in transformer oil based on all-optical photoacoustic spectroscopy,” in Proc. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, Sept. 2020.
    [5] D. Bhalla, R. K. Bansal, and H. O. Gupta, “Application of artificial intelligence techniques for dissolved gas analysis of transformers-a review,” International Scholarly and Scientific Research & Innovation, vol. 4, no. 2, pp. 261–269, 2010.
    [6] Y. -C. Huang and H. -C. Sun, “Dissolved gas analysis of mineral oil for power transformer fault diagnosis using fuzzy logic,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 3, pp. 974–981, Jun. 2013.
    [7] N. A. Fauzi et al., "Fault prediction for power transformer using optical spectrum of transformer oil and data mining analysis,” IEEE Access, vol. 8, pp. 136374–136381, Jul. 2020.
    [8] D. Saravanan, A. Hasan, A. Singh, H. Mansoor, and R. N. Shaw, “Fault prediction of transformer using machine learning and DGA,” in Proc. 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, Oct. 2020.
    [9] M. -T. Yang and L. -S. Hu, “Intelligent fault types diagnostic system for dissolved gas analysis of oil-immersed power transformer,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 6, pp. 2317–2324, Dec. 2013.
    [10] N. Poonnoy, C. Suwanasri, and T. Suwanasri, “Neural network approach to dissolved gas analysis for fault analysis in power transformers,” in Proc. 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, Mar. 2022.
    [11] A. Lakehal, Z. Ghemari, and S. Saad, “Transformer fault diagnosis using dissolved gas analysis technology and Bayesian networks,” in Proc. 2015 4th International Conference on Systems and Control (ICSC), Sousse, Tunisia, Apr. 2015.
    [12] S. A. Wani, S. A. Khan, Y. Vikram, C. Bhasker, S. Perneen, and D. Gupta, “An improved dissolved gas analysis technique for incipient fault detection,” in Proc. 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Rupnagar, India, Nov. 2017.
    [13] S. M. Sreelakshmi, L. Tharamal, and P. Preetha, “Maximum likelihood classification for transformer fault diagnosis using dissolved gas analysis,” in Proc. 2021 IEEE Electrical Insulation Conference (EIC), Denver, CO, USA, Jun. 2021.
    [14] M. S. A. Khiar, S. A. Ghani, I. S. Chairul, Y. H. M. Thayoob, and Y. Z. Y. Ghazali, “On-site OLTC monitoring using duval triangle and DWRM,” in Proc. 2014 2nd International Conference on Technology, Informatics, Management, Engineering & Environment, Bandung, Indonesia, Aug. 2014.
    [15] M. S. A. Khiar, Y. H. Md Thayoob, Y. Z. Y. Ghazali, S. Ab Ghani, and I. S. Chairul, “Condition assessment of OLTC using duval triangle and static winding resistance test,” in Proc. 2012 IEEE International Power Engineering and Optimization Conference, Melaka, Malaysia, Jun. 2012.
    [16] P. Taecharoen, P. Kunagonniyomrattana, and S. Chotigo, “Development of dissolved gas analysis analyzing program using visual studio program,” in Proc. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, Mar. 2019.
    [17] 蔡明勳,「電力變壓器故障偵測與諧波分析」,國立中山大學電機工程學系碩士論文,2003年。
    [18] D. L. Pavia, G. M. Lampman, G. S. Kriz, and R. G. Engel, Introduction to Organic Laboratory Techniques. Boston, Massachusetts, USA: Thomson Learning, 1999.
    [19] D. W. Ball, “Photoacoustic spectroscopy,” Chemistry Faculty Publications, vol. 21, no. 9, Sept. 2006.
    [20] 王浩庭,應用類神經網路於油浸式變壓器之故障診斷系統,國立清華大學工業工程與工程管理學系專題報告,2009年
    [21] A. Srivastava. (2022). A Simple Guide to Data Preprocessing in Machine Learning. [Online]. Available: https://www.v7labs.com/blog/data-preprocessing-guide
    [22] Bureau of Reclamation, Transformers: Basics, Maintenance and Diagnostics. Denver, Colorado, USA: US Department of the Interior, Apr. 2005.
    [23] Mineral Oil-Filled Electrical Equipment in Service - Guidance on the Interpretation of Dissolved and Free Gases Analysis, IEC Std 60599:2022, May 2022.

    無法下載圖示 全文公開日期 2025/07/11 (校內網路)
    全文公開日期 2025/07/11 (校外網路)
    全文公開日期 2025/07/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE