簡易檢索 / 詳目顯示

研究生: 蕭孟宇
Meng-Yu Hsiao
論文名稱: 使用色散延遲線設計微型化枝幹耦合器
Design of Miniaturized Branch-Line Couplers Using Dispersive Delay Line
指導教授: 徐敬文
Ching-Wen Hsue
口試委員: 黃進芳
none
張勝良
none
陳國龍
none
溫俊瑜
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 57
中文關鍵詞: 枝幹耦合器色散延遲線
外文關鍵詞: branch-line coupler, dispersive delay line
相關次數: 點閱:645下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個利用色散延遲線實現的微型化枝幹耦合器。色散延遲線主要由訊號層之並聯開路殘段及其對應的接地層槽線所構成,其接地層槽線可補償訊號層並聯殘段所產生之零點以使訊號層並聯殘段之|S21|頻率響應成為全通響應。透過在尺寸縮小後的枝幹耦合器加上上述所提的互補式傳輸線結構,可以讓各埠之間的相位差與縮小前的傳統枝幹耦合器相同,因此所設計的微型化枝幹耦合器能夠有和傳統枝幹耦合器相同的特性。
    論文中設計了兩個頻率分別在500 MHz和1 GHz的微型化枝幹耦合器,電路皆使用 ROGERS RO4003基板,基板厚度為 32 mils,介電係數為3.55,金屬厚度為35 μm,損失正切值為0.0027。頻率在500 MHz 的微型化枝幹耦合器電路面積縮減了59.6%,頻率在1 GHz的微型化枝幹耦合器則縮減了48%,量測的結果與模擬結果相符。


    In this thesis, a miniaturized branch-line coupler using dispersive delay line is presented. The dispersive delay line includes shunted open stubs in signal plane and slot-line of the corresponding stubs in ground plane. Transmission zeros of shunted open stubs can be convert to an all-pass response of |S21| by the slot-line of corresponding stubs. By adding the complementary configuration to a reduced branch-line coupler, the phase difference between ports remains the same with the original branch-line coupler. Thus the miniaturized branch-line coupler performs the same characteristic with the conventional branch-line coupler.
    This thesis presents two different miniaturized branch-line couplers separately at 500 MHz and 1 GHz. Their circuits are both built on the ROGERS RO4003 substrate with substrate thickness of 32 mils, conductor thickness of 35μm, and loss tangent of δ = 0.0027. The miniaturized branch-line coupler at 500 MHz has a size reduction of 59.6%. The miniaturized branch-line coupler at 1 GHz has a size reduction of 48%. The measurement results are in good agreement with the simulations.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Proposal 2 1.3 Organization of chapters 3 Chapter 2 Basic Theory 4 2.1 Microstrip lines 4 2.2 Branch-line coupler 6 2.3 Theory for size reduction of branch-line coupler 9 2.4 Dispersive delay line 11 Chapter 3 Implementation and Experimental Results 14 3.1 The design-flow diagram of a miniaturized branch-line coupler 16 3.2 Miniaturized branch-line coupler 19 3.2.1 Miniaturized branch-line coupler at 500 MHz 19 3.2.2 Miniaturized branch-line coupler at 1 GHz 33 3.3 simulated and measured results 42 Chapter 4 Conclusion 51 4.1 Conclusion 51 4.2 Future work 52 References 53

    References
    [1]S.-G. Kim, H. Kim, Y. Lee, I.-S. Kho, and J.-G. Yook, “5.8 ghz vital signal sensing doppler radar using isolation-improved branch-line coupler,” in Proc. 3rd Eur. Radar Conf., Sep. 2006, pp. 249–252.
    [2]G. R. Aiello and G. D. Rogerson, “Ultra-Wideband wireless system,” IEEE Microw. Mag., vol. 4, no. 2, pp. 36–47, Jun. 2003.
    [3]R. Gómez-García, J. I. Alonso, and D. Amor-Martín, “Using the branch-line directional coupler in the design of microwave bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3221–3229, Oct. 2005.
    [4]R. Gómez-García, J. I. Alonso, and D. Amor-Martín, “Sharp-rejection microwave planar filters using the branch-line directional coupler,” IEEE Xplore.
    [5]I.C. Hunter et al., “Microwave Filters – Applications and Technology,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 794-805, Mar. 2002.
    [6]G. A. Lee, H. Y. Lee, and F. De Flaviis,”Perforated microstrip structure for miniaturizing microwave devices,” Electron. Lett., vol. 38, no. 15, pp. 800-801, Jul. 2002.
    [7]J. Reed and G. J. Wheeler, “A method of analysis of symmetrical four-port networks,” IRE Trans. Microwave Theory and Techniques, vol. MTT-4, no. 7, pp. 246-252, Oct. 1956.
    [8]Y. C. Chiang and C. Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microwave Theory and Techniques, vol. 49, no. 3, pp. 476-479, Mar. 2001.
    [9]Y. Wang, K. Ma, S. Mou, “A compact branch-line coupler using substrate integrated suspended line technology,” IEEE Microwave and Wireless. Compon. Lett, vol. 26, no. 2, pp. 95-97, Feb. 2016.
    [10]M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microwave Wireless Compon. Lett. , vol. 12, no. 1, pp. 6-8, Jan. 2002.
    [11]P. Bhowmil, T. Moyra, P. K. Deb, “Size miniaturization of 3 dB branch line coupler by using open stubs,” Signal Processing and Integrated Networks,2015 2nd international Conference on, pp. 642-645, Feb. 2015.
    [12]S. S. Liao, P. T. Sun, N. C. Chin, and J. T. Peng, "A novel compact-size branch-line coupler," IEEE Microw. Wirel. Compon. Lett., vol. 15, no. 9, pp. 588-590, September 2005.
    [13]K. O. Sun, S. J. Ho, C. C. Yen, and D. van der. Weide, "A compact branch-line coupler using discontinuous microstrip lines," IEEE Microw. Wirel. Compon. Lett., vol. 15, no. 8, pp. 519-520, August 2005.
    [14]S. C. Jung, R. Negra, and F. M. Ghannouchi, "A design methodology for miniaturized 3 dB branch-line hybrid couplers using distributed capacitors printed in the inner area" IEEE Trans. Microw. Theory & Tech., vol. 56, no. 12, pp. 2950-2953, December 2008.
    [15]F. Hosseini, M. Yazdani, “Novel compact branch-line coupler using non-uniform transmission line,” 2009 Asia Pacific Microwave Conference, pp.1577-1580, Dec 2009.
    [16]C.-W. Hsue, R. Mittra, Y.-H. Tsai, and C.-C. Hsu, “Microwave notch filter using embedded stubs,” Microw. Optical Technol. Lett., vol. 51, no. 12, pp. 2839-2842, Dec. 2009.
    [17]E. Abdo-Sánchez, T. M. Mart́n-Guerrero, C. Camacho-Pẽnalosa, J. E. Page, and J. Esteban, "Bandwidth enhancement of microstrip-fed slot radiatingelement using its complementary stub," in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Apr. 2011, pp. 1125-1128.
    [18]C.-W. Hsue, J.-Y. Wen, Y.-W. Chang, Y.-T. Yeh,”Dispersive delay line with large group delay using deformed open stub and its complementary slot line,” IEEE Microwave Wireless Compon. Lett. , vol. 26, pp. 122-124, Jan. 2016.
    [19]S. Gupta, A. Parsa, E. Perret, R. V. Snyder, R. J. Wenzel, and C. Caloz, “Group-delay engineering noncommensurate transmission line all-pass network for analog signal processing,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 9, pp. 2392– 2407, Sep. 2010.
    [20]M. Mandal, D. Deslands, and K. Wu, “Complementary microstrip-slotline stub configuration for group delay engineering,” IEEE Microwave Wireless Compon. Lett. , vol. 22, no. 8, pp. 388-390, Aug. 2012.
    [21]J.-S. Hong, M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications” Ed., John Wiley & Sons Inc, p.p.77-80, 2001.
    [22]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartis, Microstrip Lines and Slotlines, Second Edition, Artech House, Boston, 1996.
    [23]D. M. Pozar, “Microwave Engineering,” 3nd Ed., John Wiley & Sons, Inc., 2003.
    [24]E. O. Hammerstard, “Equations for microstrip circuit design,” in Proceedings of the European Microw. Conference, Hamburg, Germany, 1975, pp. 268–272

    無法下載圖示 全文公開日期 2021/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE