簡易檢索 / 詳目顯示

研究生: 廖華謙
HUA-CHIEN LIAO
論文名稱: 可重置耦合器與毫米波天線陣列設計
Reconfigurable Coupler and Millimeter-wave Antenna Array Design 研
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 王蒼容
陳舜鴻
吳瑞鴻
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 複合式左右手合成傳輸線雙模態操作枝幹耦合器鼠競耦合器變容二極體可重置耦合器陣列天線串列式微帶天線陣列基板整合波導槽孔天線陣列
外文關鍵詞: Antenna array, branch-line coupler, composite right/left-handed synthesized transmission line, dual-mode operation, rat-race coupler, reconfigurable coupler, series-fed antenna array, substrate integrated waveguide slot array, varactor
相關次數: 點閱:389下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含兩項獨立研究主題。第一部份為「可重置耦合器」。首先,本論文先提出兩款複合式雙模態合成傳輸線,並引入變容二極體做為調整機制,藉由施加不同之逆向偏壓,可使該傳輸線段,於單一操作頻率下,表現為兩種迥異之特徵阻抗及電氣長度,並且維持良好之匹配與傳輸特性。接著,吾人以此兩種雙模態合成傳輸線作特殊組合,其能於單一操作頻率下,實現枝幹耦合器模態與鼠競耦合器模態之任意變換,其具備同相/反相之輸出相位選擇。
    第二部份為「毫米波天線陣列設計」,共設計兩款應用於毫米波頻段之天線陣列,第一款天線陣列,其天線陣列輻射場型為高增益與高指向性,利用其天線陣列特性,負責偵測正前方之物體;另一款天線陣列,具有寬波束寬與低損耗之優點,透過此天線陣列特性,將其優點利用於偵測左右兩側之物體。故,吾人設計一款混合天線陣列,透過兩款天線陣列的場型搭配,其可大幅提升此陣列系統之可掃描水平寬度,適用於自動駕駛系統之盲點偵測應用。


    his thesis consists of two independent researches. In the first part, a reconfigurable hybrid coupler, capable of switching its topology as branch-line or rat-race coupler at single frequency, is proposed and demonstrated. The core building block is the phase reconfigurable synthesized transmission line (PRSTL) whose electrical length can be switched between two states as a 1-bit phase shifter. The PRSTLs were then combined with the tunable right-handed T-section to electrically control the characteristic impedance as well as the phase of each branches of the hybrid coupler. The measured results of the proposed couplers show an acceptable insertion loss and good output phase responses in both operating states.
    Secondly, a design of millimeter wave antenna array is studied. To widen the coverage of the system, a combination array is adopted. One array feature the high gain and high directivity characteristics, which can be utilized to detect a long distance in front. On the other hand, another antenna array with the merits widebeam radiation pattern and low loss property is selected for detecting the items where are on both side. By utilizing the dual antenna arrays, the detectable range in the horizontal plane of the system can be improved significantly. It is applied for the system of self-driving and spot detection.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 第二章 可重置耦合器 第三章 毫米波天線陣列設計 第四章 結論 參考文獻

    [1] E. Lourandakis, M. Schmidt, S. Seitz, and R. Weigel, “Reduced size frequency agile microwave circuits using ferroelectric thin-film varactors,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3093-3099, 2008.
    [2] H. -W. Zhang, X. -W. Shi, F. Wei, B. Liu, and L. Xu, “Reconfigurable coupler with two operating modes for transceivers and diversity systems,” Electronics Lett., vol. 47, no. 12, pp. 707-708, June 2011.
    [3] B. Dwivedy, S. K. Behera, and D. Mishra, “Design of a frequency agile rat race coupler,” in Proc. IEEE Appl. Electromag. Conf., pp. 1-2, 2015
    [4] R. Chhabra, S. Verma, and C. R- Krishna, “A survey on driver behavior detection techniques for intelligent transportation systems, ” International Conference on Cloud Computing, Data Science & Engineering - Confluence, pp. 36-41, 2017
    [5] S. A. Sha-Mohammedy, D. C. Popescuz, and H. M. Abdel-Wahab, “A New Technique for Automatic Incident Detection in Intelligent Transportation Systems Using Aggregation of Traffic Parameters,” IEEE Wireless Communications and Networking Conference (WCNC), pp. 2144-2148, 2015
    [6] M.-H. Hsiao, H.-P. Kuo, H.-C. Wu, Y.-K. Chen, and S.-Y. Lee, “Object-Based Video Streaming Technique With Application to Intelligent Transportation Systems,” in Proc. IEEE on Networking Sensing and Control, pp. 315–320, 2004.
    [7] M. Zhou, J. Shao, B. Arigong, H. Ren, J. Ding, and H. Zhang, “A Novel 3dB Directional Coupler with Reconfigurable Performance,” Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), pp. 1-4, 2014
    [8] A. Lai, T. Itoh, and C. Caloz, “Composite right/left-handed transmission line metamaterials,” IEEE Microwave Magazine, vol.5, no. 3, pp. 35-50, Sep. 2004
    [9] H.-N. Chu and T.-G. Ma, “Beamwidth Switchable Planar Microstrip Series-fed Slot Array Using Reconfigurable Synthesized Transmission Lines,” IEEE Transactions on Antennas and Propagation, no. 99, pp. 1-6, May 2017
    [10] C.-H. Lai, C.-Y. Shiau, and T.-G. Ma, “Tri-Mode Heterogeneous Integrated Beam-Switching/Van Atta/Phase-Conjugating Array Using Synthesized Transmission Lines,” IEEE Transactions on Microwave Theory and Techniques (TMTT), vol. 62, no. 9, pp. 2180-2192, Jul. 2014
    [11] L. Chang and T.-G. Ma, “Dual-Mode Branch-Line/Rat-Race Coupler Using Composite Right-/Left-Handed Lines,” IEEE Microwave and Wireless Components Letters, pp. 449-451, Apr. 2017
    [12] C.-H. Lai, C.-Y. Shiau, and T.-G. Ma, “Novel Tri-operational Mode Synthesized Transmission Line,” in Proc. European Microwave Conference (EuMC), pp. 581-584, Oct. 2013
    [13] T.-G. Ma, C.-W. Wang, C.-H. Lai, and Y.-C. Tseng, “Dual/Tri‐Operational Mode Synthesized Transmission Lines: Design and Analysis,” Wiley, pp. 92-94, 2006
    [14] X. Zhang, L. Ma, H. Chen, and J. Yang, “Target tracking with infrared imaging and millimetre-wave radar sensor,” in Proc. IET International Radar Conference, pp. 1-8, Feb. 2013
    [15] R. Mobus and U. Kolbe, “Multi-target multi-object tracking, sensor fusion of radar and infrared,” in Proc. IEEE Intelligent Vehicles Symposium, pp. 732-737, Jun. 2010
    [16] A. Nowicki, “Medical diagnostic ultrasound: radar roots and recent developments,” in Proc. IEEE International Conference on Microwaves and Radar, vol. 4, pp. 320-329, May 1998
    [17] F. Gao, X. Feng, and Y. Zheng, “Micro-doppler photoacoustic effect and sensing by ultrasound radar,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 3, pp. 1-6, May 2016
    [18] T. Yano, T. Tsujimura, and K. Yoshida, “Vehicle identification technique using active laser radar system,” in Proc. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 275-280, Aug. 2003
    [19] M. Akita, M. Watanabe, and T. Inaba, “Development of millimeter wave radar using stepped multiple frequency Complementary Phase Code and concept of MIMO configuration,” in Proc. IEEE Radar Conference, pp. 129–134, May 2017
    [20] A. Kanno, T. Umezawa, T. Kuri, and N. Yamamoto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proc. Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), pp. 1-6, Oct. 2016
    [21] C. Carlowitz, A. Esswein, R. Weigel, and M. Vossiek, “A low power pulse frequency modulated UWB radar transmitter concept based on switched injection locked harmonic sampling,” in Proc. German Microwave Conference, pp.1–4, Mar. 2012.
    [22] A. N Gaikwad, U. S Verulkar, and K. S Dongre, “Experimental study and analysis of stepped-frequency continuous wave based radar for through the wall detection of life signs,” in Proc. IEEE Region 10 Conference, pp. 1565-1569, Nov. 2016.
    [23] M. Slovic, B. Jokanovic, and B. Kolundzija, “High efficiency patch antenna for 24 GHz anticollision radar,” in Proc Telecommunication in ModernSatellite, Cable and Broadcasting Services, pp. 28-30, Sep. 2005.
    [24] A. Kuriyama, H. Nagaishi, H. Kuroda, and K. Takano, “A high efficiency antenna with horn and lens for 77 GHz automotive long range radar,” in Proc. European Microwave Conference (EuMC), pp. 1525–1528, Oct. 2016.
    [25] T.-P. Chang, K.-L. Hung, and H.-T. Chou, “A K-band FMCW radar with the receiving antenna diversity in the car detection applications,” in Proc. Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 169-172, May 2015
    [26] Z. Peng, L. Ran, and C. Li, “A K-Band portable FMCW radar with beamforming array for short-range localization and vital-doppler targets discrimination,” IEEE Transactions on Microwave Theory and Techniques, no. 99, Feb. 2017.
    [27] 李高億, 以相位可重置合成傳輸線實現場型重置天線與雙天線整合相位陣列之晶片化研究, 國立台灣科技大學電機工程研究所, 碩士論文, 民國106
    [28] Datasheet of Tuning Varactors SMV1405LF [Online]. Available: http://www.skyworksinc.com/Product/552/SMV1405_series
    [29] Datasheet of Tuning Varactors SMV2020-079LF [Online]. Available: http://www.skyworksinc.com/Product/792/SMV2020-079LF
    [30] A. Balanis, “Antenna theory analysis and design, ” Wiley, 2005
    [31] T.-H. Jang, H.-Y. Kim, I.-S. Song, C.-J. Lee, and J.-H. Lee, “A wideband aperture efficient 60-GHz series-fed E-shaped patch antenna array with copolarized parasitic patches,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 12, pp. 5518-5521, Oct. 2016.
    [32] Z. Chen and S. Otto, “A taper optimization for pattern synthesis of microstrip series-fed patch array antennas,” in Proc. European Wireless Technology Conference, pp. 160-163, Sep. 2009.
    [33] L. Yan, W. Hong, K. Wu, and T. J. Cui, “Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines,” IEE Microwaves, Antennas and Propagation, vol. 152, no. 1, pp. 1573-1580, Apr. 2005
    [34] Z. Li, H. Xu, G. Zhao, Y. Ge, and H. Sun, “A substrate integrated waveguide slot array antenna at Ka-band,” in Proc. Microwave and Millimeter Wave Technology, vol. 3, pp. 1-4, May 2012.
    [35] D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 2, pp. 68-70, Feb. 2001.
    [36] G. Hua, W. Hong, X.-H. Sun, and H.-X. Zhou, “Design of an omnidirectional line array with SIW longitudinal slot antenna,” in Proc. Microwave and Millimeter Wave Technology, pp.1114-1117, Apr. 2008.

    無法下載圖示 全文公開日期 2022/11/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2022/11/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE