簡易檢索 / 詳目顯示

研究生: 張浩哲
Haw-Jer Chang
論文名稱: 梭狀芽孢桿菌膠原酶製備酶解膠原蛋白分子及其理化性質研究
Preparation and Physicochemical Properties of Digested Collagen Fragments Digested by Clostridium Histolyticun Collagenases
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 張豐志
none
陳幹男
none
許耀基
none
黃繼遠
none
黃國賢
none
吳進三
none
許應舉
none
陳宏恩
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 178
中文關鍵詞: 膠原蛋白甲殼素
外文關鍵詞: collagen, chitosan
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用胃蛋白酶在酸性條件下從豬皮中萃取膠原蛋白,並研究不同去乙醯度甲殼素與膠原蛋白共混樣品的性能。 採用正十二烷基磺酸鈉(SDS)-聚丙烯醯胺凝膠電泳法(PAGE)對膠原蛋白樣品進行分析,並估算其相對分子質量。利用分光光度計對所萃取膠原蛋白定性分析。 用傅立葉變換紅外光譜儀(FT-IR),示差掃描熱量分析儀(DSC),烏氏(Ubbelohde)黏度計對甲殼素與膠原蛋白共混溶液的相容性,理化性質進行了詳細的探討。 並參照AATCC方法對共混溶液的抑菌性能進行研究,並討論甲殼素不同去乙醯度及濃度對抑菌率的影響。
    電泳分析結果證明,所萃取的膠原蛋白為Ⅰ型具有生物活性的膠原蛋白,估算其相對分子質量為320 kDa。固有粘度測試證明,甲殼素溶液的[η]m值隨甲殼素去乙醯度的增加而逐漸增加,四種去乙醯度甲殼素溶液的[η]m均明顯比膠原蛋白溶液的[η]m大,而且甲殼素/膠原蛋白共混溶液的[η]m值隨著甲殼素含量的增加而增加。而根據不同去乙醯度的甲殼素/膠原蛋白共混溶液的b12值均明顯大於b12i,則可說明膠原蛋白與甲殼素具有相容性。膠原蛋白與不同去乙醯度的甲殼素共混之後,FT-IR分析表明,膠原蛋白的變性程度隨甲殼素含量的增加而增加,即生物活性隨甲殼素含量增加而降低。DSC分析證明,膠原蛋白/甲殼素共混樣品的變性溫度(Td)隨其內甲殼素含量由0%逐漸增加到20%時先降低,之後隨甲殼素含量增加至40%時其Td值 陡然升高至較對應純甲殼素分子之變性溫度更高之數值;但當甲殼素含量大於40%時,隨著甲殼素含量增加,其Td值反而明顯下降然後再逐步上升至接近甲殼素分子之變性溫度。同時,抑菌性能研究表明,甲殼素溶液的最小有效抑菌濃度是0.03 wt%,且甲殼素的濃度和去乙醯度越高,對金黃色葡萄球菌的抑菌效果越好。而甲殼素/膠原蛋白共混溶液的抑菌率隨著甲殼素含量的增加而增加,相同甲殼素濃度下,抑菌率隨著甲殼素去乙醯度增加而增加。
    更進一步的研究是將所萃取出相對分子量為320 kDa具有完整三股螺旋結構的Ⅰ型膠原蛋白分子,以梭狀芽孢桿菌膠原酶降解其分子量。經SDS-PAGE電泳及GPC數據分析顯示,膠原蛋白分子降解速率隨著溫度的升高或者梭狀芽孢桿菌膠原酶濃度增加而快。隨著降解時間的增加,所得膠原蛋白降解產物分子量逐漸變小。同時,隨著降解時間的增加,分子量分佈範圍逐漸變廣,當降解時間達到一臨界值(t0)時,分子量分佈範圍達到最大,之後逐漸變小。由DSC及變性溫度分析發現,在24oC下經梭狀芽孢桿菌膠原酶降解之後,膠原蛋白之熱穩定溫度(Tts),裂解溫度(Ttd)及變性溫度(Td)值均隨降解時間增長而逐漸降低。FT-IR分析說明,在一定的反應溫度下,膠原蛋白降解產物隨著反應時間的逐漸增加,使得圖譜中1238與1459 cm-1吸光率的比值(R )逐漸變小,即其活性隨著分子量的減小而降低。 另外,將上述具有活性之酶降解膠原蛋白分子溶液經薄膜過濾法分離出不同分子量膠原蛋白分子,經熱性質分析顯示,其熱裂解溫度及變性溫度值均隨分子量減少而降低。本研究進一步利用人體皮膚模擬吸收系統探討了在相同時間內對不同分子量之降解膠原蛋白溶液吸收量的差異,為膠原蛋白活性降解產物的應用提供了比較有意義的依據。


    The collagen molecules were successfully extracted from the porcine dermal tissue using the acid swelling-pepsin digestion method. The specimens were prepared by blending collagen and chitosan with varying deacetylation degrees in solutions in which collagen molecules were extracted from the porcine dermal tissue. The intrinsic viscosity and UV/vis spectrophotometer were used to evaluate the miscibility properties of collagen and chitosan molecules. The results of instrinsic viscosity analysis suggests that the chitosan and collagen molecules with varying deacetylation degrees are miscible at the molecular level for all compositions of the chitosan/collagen mixture solutions prepared in this study. Fourier transform infrared analyses reveal that the percentages of preserved triple helix structures present in collagen molecules in the collagen/chitosan specimens decreased with increasing the chitosan contents, since the ratios of the peak absorbance at 1239 and 1455 cm−1 of collagen/chitosan specimens decreased significantly as their chitosan contents increased. Abnormally high denaturation temperatures (Td) were observed as the chitosan contents of collagen/chitosan specimens reached 40 wt%. The antibacterial activity of collagen/chitosan blends increased consistently with increasing deacetylation degrees and concentrations of the chitosan molecules in the collagen/chitosan solutions.
    Further investigation focus on porcine dermal collagen molecules digested by clostridium histolyticun collagenases (CHC) at varying compositions and conditions. Collagen fragments thus prepared, with significantly low molecular weight but visible denaturation temperatures and/or triple helix structures, may be useful for clinical applications. As evidenced by Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) and gel permeation chromatography (GPC) analyses, relatively high molecular weights of α1, α2 subunit, β,βdimmers and γtrimmers of the collagen fragments gradually disappear as their incubation temperature and/or time values increase. The time values corresponding to the disappearance of sigmoid plots in the denaturation curves, denaturation endotherm in DSC thermograms and γbands in SDS-PAGE patterns of digested collagen specimens are the same and reduce significantly as their incubation temperatures increase. Fourier transform infra-red analyses results suggest that the percentages of preserved triple helix structures present in collagen molecules of digested collagen specimens also reduce significantly with increasing the incubation temperature and time values.
    Moreover, CHC digested collagen fragments with relatively low molecular weights were successfully separated using varying grades of ultra-filtration membranes. Gel permeation analyses revealed that collagen fragments with varying molecular weights were successfully segregated using ultra-filtration membranes with varying grades of pore sizes. Fourier transform infra-red analyses suggest that digested collagen fragments and digested collagen fragments prepared after ultra-filtration still preserve certain percentages of triple helix structures of collagen molecules, although the percentages of preserved triple helix structures present in digested and ultra-filtrated collagen fragments reduce significantly as their Mw values reduce. Thermal and denaturation temperature analysis suggest that denaturation temperature and thermal degradation temperature values of digested collagen fragments and ultra-filtrated collagen fragments decrease significantly as their Mw values reduce. The absorbed/desorbed rates and amounts of digested and ultra-filtrated collagen fragments in PA6/PP flocking specimens are significantly higher than those of the original collagens, and increase significantly as their Mw values reduce. Possible reasons accounting for the above degradation, ultra-filtration physicochemical, absorbing and desorbing properties of original, digested and ultra-filtrated digested collagen molecules are reported.

    Table of Contents 博士學位論文指導教授推薦書 博士學位考試委員審定書 摘要……………………………………………………………I ABSTRACT………………………………………………………IV 致謝……………………………………………………………VII TABL OF CONTENTS……………………………………………VIII LIST OF TABLE………………………………………XII LIST OF FIGURE………………………………………….……..… XIII CHAPTER 1 Prolegomenon………..................………….…………...…1 1.1 Introduction………………………….…..………………………..…1 1.2 Introduction to Collagen Structure….………………..……….4 1.3 Fibrillar structure.….....................................................................….6 1.4 Types of collagen molecules…….......................................................7 1.5 Collagenous Biomaterials……...……….....…….………………….10 1.6 Bacterial Collagenases and Collagen-Degrading Enzymes….…….12 1.7 The Application of collagen in Industrial Region………………….14 1.8 The Application of collagen in Reconstructive Surgical and Cosmetic Regions………………………………………………………………….15 1.9 Applications of Chitosan………………......……………….....…….16 1.9.1 Antibacterial Properties……………………………………...…17 1.9.2 Application in Cosmetics and Artificial Skin and Dressings…….19 References……………………………………………………..………20 CHAPTER 2 Antibacterial and Miscible Properties of Chitosan/Collagen Blends…………………………...……..………………….…………….26 Abstract…………………………...…………………….….…………...26 2.1 Introduction…………………………………………………………27 2.2 Experimental ………………………………………………………..29 2.2.1 Preparation of collagen specimens……………………………..29 2.2.2 Samples Preparation……………………………………..…….…31 2.2.3 Intrinsic viscosity measurements……………………..………32 2.2.4 UV absorbance…………………………………………….…...…34 2.2.5 Fourier transform infrared (FT-IR) spectroscopy…………..….…35 2.2.6 Thermal properties………………………………………..………36 2.2.7 Antibacterial activity…………………………………………...…37 2.3 Results and discussion………………………………………………39 2.3.1 Intrinsic viscosity measurements…………………………………..39 2.3.2 UV absorbance……………………………………………....……43 2.3.3 Fourier transforms infrared spectroscopy……………………….45 2.3.4 Thermal properties………………….………..………………...…50 2.3.5 Antibacterial activity…………………………………….……..…57 2.4 Conclusions…………………………………………………………63 References…………………………………………………………….64 CHAPTER 3 Physicochemical properties and molecular weight characterisation of porcine dermal collagen digested under varying conditions with Clostridium Histolytic Collagenase……………….……66 Abstract…………………………………………………………………66 3.1 Introduction………………………………………...…………………..68 3.2 Experimental………………………………………..……..……….…..71 3.2.1 Preparation of collagen specimens …………..……………….…..71 3.2.2 Digestion of collagens………………………..……………………..72 3.2.3 Sodium dodecyl sulfate - polyacrylamide gel eletrophoresis.…..74 3.2.4 Gel permeation chromatography analysis………………….…..77 3.2.5 Denaturation temperature analysis………….………………..…78 3.2.6 Thermal properties ………………………………………………79 3.2.7 Fourier transform infra-red spectroscopy…………………….…..80 3.3 Results and Discussion………………………………………..……81 3.3.1 Sodium dodecyl sulfate - polyacrylamide gel eletrophoresis (SDS-PAGE)…………………………………………………………...81 3.3.2 Gel permeation chromatography analysis ………...………..….....90 3.3.3 Denaturation temperature analysis ………………...………….....94 3.3.4 Thermal properties……………………………………….…….....99 3.3.5 Fourier transforms infra-red spectroscopy………………….......104 3.4 Conclusions…………………………………………………..……110 References………………………………………………………….…..111 CHAPTER 4 Preparation and Physicochemical Properties of Digested Collagen Fragments with Varying Molecular Weights……………...…114 Abstract………………………………………………………………114 4.1 Introduction……………………………………………………….…115 4.2 Experimental……………………………..………………..……….…117 4.2.1 Preparation of collagen specimens ………..………………….…117 4.2.2 Digestion of collagens……………………..………………………118 4.2.3 Preparation of digested collagens with varying molecular weights…………………………………………………………………………119 4.2.4 Fourier transforms infra-red spectroscopy…….…………….121 4.2.5 Gel permeation chromatography analysis (GPC)…………….…122 4.2.6 Thermal properties …………………………………………….123 4.2.7 Denaturation temperature analysis……………………….……124 4.2.8 Materials and flocking sample preparation……………………125 4.2.9 Absorbing and desorbing properties of original collagens and ultra-filtrated collagen fragments……………………………..………127 4.3 Results and Discussion……………………….………………..…130 4.3.1 Gel permeation chromatography analysis………………………130 4.3.2 Fourier transforms infra-red spectroscopy …………….…..…...132 4.3.3 Thermal properties ……………………………………………...142 4.3.4 Denaturation temperature analysis……………………………...145 4.3.5 Absorbing and desorbing properties of the original collagens and ultra-filtrated collagen fragments..................................................148 4.4 Conclusions…………………………………………………..……151 References………………………………………………………….…..152 CHAPTER 5 Conclusions……………………………………………..155 作者簡介 博碩士論文授權書 List of Tables Table 1.1 Vertebrate collagens………………………………………..…8 Table 1.2 Advantages and disadvantages of collagen as a biomaterial..9 Table 1.3 Antibacterial and antifungal activity of chitosan……………18 Table 2.1 Compositions of the chitosan / collagen mixture solutions.…38 Table 2.2 The evaluated [η]m, bm, b12 and b12i values of chitosan/collagen (80% deacetylation degree) solutions....... …….……………….………41 Table 2.3 The evaluated [η]m, bm, b12 and b12i values of chitosan/collagen (95% deacetylation degree) solutions……...…………………………..42 Table 2.4 The evaluated values R of collagen/chitosan (95% deacetylation degree) films……………………………..........………....49 Table 2.5 The reduction rates of Staphylococcus aureus of chitosan solutions with varying concentrations and deacetylation degrees……..59 Table 2.6 The reduction rates of Staphylococcus aureus of chitosan / collagen mixture solutions with varying concentrations and deacetylation degrees.……………………………………….………………………….60 Table 3.1 Digested collagen solutions after incubating with Clostridium histolyticun collagenases (CHC) at varying temperatures for various amounts of time…………………………………………………...……..73 Table 3.2 The compositions of 5% stacking gel and 10 % separating gel………………………………………………………………………………76 List of Figures Figure 1.1 The triple helix structure of tropocollagen molecule…….…5 Figure 1.2 Biosynthetic route to collagen fibers, which are the major component of skin……………………………………………………...11 Figure 2.1 UV absorbance at 470 nm of Ch95xCoy (○), Ch90xCoy (○), Ch85xCoy (○) and Ch80xCoy (○) collagen/chitosan solutions with 2N NaOH added and Ch95xCoy(Δ), Ch90xCoy(Δ), Ch85xCoy(Δ) and Ch80xCoy(Δ) collagen/chitosan solutions……………………….......…………...……44 Figure 2.2 FT-IR spectra of collagen/chitosan films (80% deacetylation degree) with collagen contents of (a) 100%, (b) 80%, (c) 60%, (d) 40%, (e) 20% and (f) 0%....... ……………………………………….………47 Figure 2.3 FT-IR spectra of collagen/chitosan films (95% deacetylation degree) with collagen contents of (a) 100%, (b) 80%, (c) 60%, (d) 40%, (e) 20% and (f) 0%……...…………………….………………………..48 Figure 2.4 DSC thermograms of chitosan/collagen specimens with different chitosan (80% deacetylation degree) contents of (a) 0%, (b) 20%, (c) 40%, (d) 60%, (e) 80% and (f) 100% scanned at 10C/min…………………......................................................................53 Figure 2.5 DSC thermograms of chitosan/collagen specimens with different chitosan (85% deacetylation degree) contents of (a) 0%, (b) 20%, (c) 40%, (d) 60%, (e) 80% and (f) 100% scanned at 10C/min………………………………………………………………...54 Figure 2.6 DSC thermograms of chitosan/collagen specimens with different chitosan (90% deacetylation degree) contents of (a) 0%, (b) 20%, (c) 40%, (d) 60%, (e) 80% and (f) 100% scanned at 10C/min.……………………………………………………………….55 Figure 2.7 DSC thermograms of chitosan/collagen specimens with different chitosan (95% deacetylation degree) contents of (a) 0%, (b) 20%, (c) 40%, (d) 60%, (e) 80% and (f) 100% scanned at 10C /min. Antibacterial activity……………………………………...………..…56 Figure 2.8 Residual amounts of Staphylococcus aureus in (a) Control, (b1) Ch800.03, (b2) Ch800.003, (c1) Ch850.03, (c2) Ch850.003, (d1) Ch900.03, (d2) Ch900.003, (e1) Ch950.03 and (e2) Ch950.003 solutions………………………61 Figure 2.9 Residual amounts of Staphylococcus aureus in (a) Control, (b1) Ch800.15Co50, (b2) Ch800.15Co100, (b3) Ch800.15Co200, (b4) Ch800.15Co400, (c1) Ch900.15Co50, (c2) Ch900.15Co100, (c3) Ch900.15Co200, (c4) Ch900.15Co400, (d1) Ch800.03Co50, (d2) Ch800.03Co100, (d3) Ch800.03Co200, (d4) Ch800.03Co400, (e1) Ch900.03Co50, (e2) Ch900.03Co100, (e3) Ch900.03Co200 and (e4) Ch900.03Co400 solutions…………………………………….…………….62 Figure 3.1 SDS-PAGE patterns of (a) collagen and digested collagen incubated with CHC at 16oC for (b) 16, (c) 32, (d) 48, (e) 64, (f) 80, (g) 96, (h) 112, (i) 128, (j) 144 and (k) 160 hours, in which the weight ratio of collagen to CHC molecules was 40/1………………………….………84 Figure 3.2 SDS-PAGE patterns of (a) collagen and digested collagen incubated with CHC at 24oC for (b) 2, (c) 4, (d) 6, (e) 8, (f) 10, (g) 12, (h) 14, (i) 16, (j) 18, (k) 20 and (l) 22 hours, in which the weight ratio of collagen to CHC molecules was 40/1………………………………….85 Figure 3.3 SDS-PAGE patterns of (a) collagen and digested collagen incubated with CHC at 28oC for (b) 2, (c) 4, (d) 6, (e) 8, (f) 10 and (g) 12 hours, in which the weight ratio of collagen to CHC molecules was 40/1………………………………………………...…………..……..…86 Figure 3.4 SDS-PAGE patterns of (a) collagen and digested collagen incubated with CHC at 24oC for (b) 2, (c) 4, (d) 6, (e) 8, (f) 10, (g) 12 and (h) 14 hours, in which the weight ratio of collagen to CHC molecules was 30/1………………………………………………...………………….87 Figure 3.5 SDS-PAGE patterns of (a) collagen and digested collagen incubated with CHC at 24oC for (b) 2, (c) 4, (d) 6, (e) 8, (f) 10, (g) 12, (h) 14, (i) 16, (j) 18, (k) 20, (l) 22, (m) 24, (n) 26, (o) 28 and (p) 30 hours, in which the weight ratio of collagen to CHC molecules was 50/1……………………...……………………………………………....88 Figure 3.6 Molecular weight specifications of the bands obtained from SDS-PAGE patterns of (a) collagens, (b) D50C2414, (c) D50C2430 digested collagens and (d) molecular weight marker specimens………..….…89 Figure 3.7 The average molecular weights and molecular weight distributions of (a) collagen specimen, (b) D50C1668 and (c) D50C16164 digested collagen specimens………...……………………………..……91 Figure 3.8 The average molecular weights and molecular weight distributions of (a) collagen specimen, (b) D50C2414 and (c) D50C2430 digested collagen specimens………………………...………...……….92 Figure 3.9 The average molecular weights and molecular weight distributions of (a) collagen specimen, (b) D50C288 and (c) D50C2818 digested collagen specimens………………………………………….....93 Figure 3.10 Denaturation curves of (a) collagen specimen, (b) D50C1668 and (c) D50C16164 digested collagen specimens…………………..……96 Figure 3.11 Denaturation curves of (a) collagen specimen, (b) D50C2414 and (c) D50C2430 digested collagen specimens…………………..…..…97 Figure 3.12 Denaturation curves of (a) collagen specimen, (b) D50C288 and (c) D50C2818 digested collagen specimens……………………......98 Figure 3.13 DSC thermograms of (a) collagen specimen, (b) D50C1668 and (c) D50C16164 digested collagen specimens……………………………101 Figure 3.14 DSC thermograms of (a) collagen specimen, (b) D50C2414 and (c) D50C2430 digested collagen specimens……………..………...……102 Figure 3.15 DSC thermograms of (a) collagen specimen, (b) D50C288 and (c) D50C2818 digested collagen specimens……………………....103 Figure 3.16 Fourier transform infra-red spectra of (a) collagen specimen, (b) D50C1668 and (c) D50C16164 digested collagen specimens…107 Figure 3.17 Fourier transform infra-red spectra of (a) collagen specimen, (b) D50C2414 and (c) D50C2430 digested collagen specimens……...……108 Figure 3.18 Fourier transform infra-red spectra of (a) collagen specimen, (b) D50C288 and (c) D50C2818 digested collagen specimen…109 Figure 4.1 Illustrations of the ultra-filtration cup apparatus: (a) nitrogen pressure reducing valve, (b) ultra-filtration cup and (c) PES ultra-filtration membrane……………………………………….……120 Figure 4.2 Illustrations of laboratory-scale flocking machine: (a) aluminum plate electrode, (b) melt-blown nonwoven, (c) frame, (d) flock fiber box and (e) high-voltage power supply………………………126 Figure 4.3 Illustrations of the collagen desorbing apparatus: (a) pressure plate, (b) test sample layer, (c) fix frame, (d) PE porous membrane, (e) absorption layer and (f) hot plate……………………………………129 Figure 4.4 Average molecular weights and molecular weight distributions of (a) collagen specimen, (b) digested collagen fragments, and digested collagen fragments ultra-filtrated using (c) 100 KDa, (d) 50 KDa, and (e) 20 KDa grades of ultra-filtration membranes……….….131 Figure 4.5 FT-IR spectra of (a) collagen specimen, (b) digested collagen fragment, and digested collagen fragments ultra-filtrated using (c) 100 KDa, (d) 50 KDa and (e) 20 KDa grades of ultra-filtration membranes……………………………………………………………..135 Figure 4.6 FT-IR spectra of collagen specimens determined at (a) 25, (b) 30, (c) 35, (d) 40, (e) 45, (f) 50, (g) 55 and (h) 60 oC………..……136 Figure 4.7 FT-IR spectra of digested collagen fragments determined at (a) 25, (b) 30, (c) 35, (d) 40, (e) 45, (f) 48, (g) 50, (h) 55 and (i) 60 oC…137 Figure 4.8 FT-IR spectra of digested collagen fragments ultra-filtrated using 100 KDa ultra-filtration membranes determined at (a) 25, (b) 30, (c) 35, (d) 40, (e) 43, (f) 45, (g) 50, (h) 55 and (i) 60 oC ………………..138 Figure 4.9 FT-IR spectra of digested collagen fragments ultra-filtrated using 50 KDa ultra-filtration membranes determined at (a) 25, (b) 30, (c) 35, (d) 38, (e) 40, (f) 45, (g) 50, (h) 55 and (i) 60 oC…………………..139 Figure 4.10 FT-IR spectra of digested collagen fragments ultra-filtrated using 20 KDa ultra-filtration membranes determined at (a) 25, (b) 30, (c) 33, (d) 35, (e) 40, (f) 45, (g) 50, (h) 55 and (i) 60 oC…………………140 Figure 4.11 R values of digested collagen fragments (▽), digested collagen fragments ultra-filtrated using 100 KDa (□), 50 KDa (○) and 20 KDa (△) grades of ultra-filtration membranes at varying temperatures…………………………………………………………141 Figure 4.12 DSC thermograms of (a) collagen specimen, (b) digested collagen fragments and digested collagen fragments ultra-filtrated using (c) 100 KDa, (d) 50 KDa, and (e) 20 KDa grades of ultra-filtration membranes……………………………………………………………144 Figure 4.13 Denaturation curves of (a) collagen specimen, (b) digested collagen fragments and digested collagen fragments ultra-filtrated using (c) 100 KDa, (d) 50 KDa, and (e) 20 KDa grades of ultra-filtration membranes……………………………………………………………147 Figure 4.14 The absorbed amounts (△), desorbed amounts (○) and desorbing ratios (□) of original collagen specimen (Mw = 1000KDa), digested collagen fragments (Mw = 487KDa) and digested collagen fragments ultra-filtrated using 100 KDa, 50 KDa, and 20 KDa grades of ultra-filtration membranes in PA6/PP flocking samples……………150

    1. Bailey, A. J.; Comprehensive Biochemistry. 1968, 26, 297.
    2. Kuhn, K.; Essays Biochem. 1969, 5, 59.
    3. Traub, W.; Piez, K. A.; Adv Protein Chem. 1971, 25, 243.
    4. Gallop, P. M.; Blumenfeld, O. O. and Seifter, S.; Annu. Rev. Biochem. 1972, 41, 617.
    5. Chapman, J. A.; Tzaphlidou, M.; Meek, K. M. and Kadler, K. E.; Electron Microsc. Rev. 1990, 3, 143.
    6. Gross, J.; Harvey Lect. 1973, 68, 351.
    7. Nimni, M. E.; Semin Arthritis Rheum. 1974, 4, 95.
    8. Prockop, D. J.; Kivirikko, K. I.; Annu. Rev. Biochem. 1995, 64, 403.
    9. Hance, A. J.; Crystal, R. G.; Am. Rev. Respir. Dis. 1975, 112, 657.
    10. Miyahara, M.; Njieha, F. K. and Prockop, D. J.; J. Biol. Chem. 1982, 257, 8442.
    11. Liu, H.; Li, D. and Guo, S.; Food Chemistry. 2007, 101, 621.
    12. Ogawa, M.; Portier, R. J.; Moody, M. W.; Bell, J.; Schexnayder, M. A. and Losso, J. N.; Food Chemistry. 2004, 88, 495.
    13. Plepis, A. M. D. G.; Goissis, G. and Das-Gupta, D. K.; Polym. Eng. Sci. 1996, 24, 2932.
    14. Morimura, S.; Nagata, H.; Uemura, Y.; Fahmi, A.; Shigematsu, T. and Kida, K.; Process Biochem. 2002, 37, 1403.
    15. Muyonga, J. H.; Cole, C. G. B. and Duodu, K. G.; Food Chem. 2004, 86, 325.
    16. Trebacz, H.; Wojtowicz, K.; Int. J. Biol. Macromol. 2005, 37, 257.
    17. Chien, J. C. W.; Macromol. Chem. 1975, 13, 1.
    18. Li, G. Y.; Fukunaga, S.; Takenouchi, K. and Nakamura, F.; Int. J. Cosmet. Sci. 2005, 27, 101.
    2. Yeh, J. T.; Chang, H. J.; Xiao, L. F.; Yang, L.; Zhu, P.; Huang, G. X. and Yao, W. H.; e-Polymers. 2010, no. 110.
    3. French, M. F.; Bhown, A. and Wart, H. E. V.; J. Protein chem.; 1992, 11, 83.
    4. Chvapil, M.; Echmayer, Z. ; J. Cosmet Sci. 1985, 7, 41.
    5. Hickman, D.; Sims, T. J.; Miles, C. A. and Bailey, A. J.; J. Biotech. 2000, 79, 245.
    6. Watanabe, K.; Appl. Microbiol. Biotechnol. 2004, 63, 520.
    7. Matsushita, O.; Koide, T.; Kobayashi, R.; Nagata, K. and Okabe, A.; J. Biol. Chem. 2001, 276, 8761.
    8. Hasty, K. A.; Jeffrey, J. J.; Hibbs, M. S. and Welgus, H. G. J. Biol. Chem. 1987, 262, 10048.
    9. Wu, H.; Byrne, M. H.; Stacey, A. and Goldring, M. B.; Proc. Natl. Acad. Sci. 1990, 87, 5888.
    10. Arnett, S. N.; Fields, G.; Hansen, H. B. and Wart, H. E. V.; J. Biol. Chem. 1991, 266, 6747.
    11. Kima, K. S.; Leeb, K. H.; Choa, K. and Park, C. E.; J. Membrane Sci. 2002, 199, 135.
    12. Kim, C. H.; Choi, K. S.; J. Ind. Eng. Chem. 2002, 8, 71.
    13. Allan, C. R.; Hadwiger, L. A.; J. Exp. Mycol. 1979, 3, 285.
    14. Illum, L.; Pharm. Res. 1998, 15, 1326.
    15. Muhannad, J.; Franz, H. F.; and Bernd, W. M.; Eur. J. Pharm. Biopharm. 2002, 53, 115.
    16. Taravel, M. N.; Domard, A.; J. Biomaterials, 1993, 14, 930.
    17. Domard, A.; Taravel, M. N.; J. Biomaterials, 1995, 16, 865.
    18. Taravel, M. N.; Domard, A.; J. Biomaterials. 1996, 17, 451.
    19. Hasty, K. A.; Jeffrey, J. J.; Hibbs, M. S. and Welgus, H. G.; J. Biol. Chem. 1987, 262, 10048.
    20. Wu, H.; Byrne, M. H.; Stacey, A. and Goldring, M. B.; Proc. Natl. Acad. Sci. 1990, 87, 5888.
    21. Arnett, S. N.; Fields, G.; Hansen, H. B. and Wart, H. E. V.; J. Biol. Chem. 1991, 266, 6747.
    22. Chung, L.; Dinakarpandian, D.; Yoshida, N.; Lauer-Fields, J. L.; Fields, G. B.; Visse, R. and Nagase, H.; The EMBO journal. 2004, 23, 3020.
    23. Robin, S. W.; David, D. B. and Jan, T. C.; J. Mater. Sci.: Mater. Med. 2010, 21, 451.
    24. Steven, F. S.; Connective Tissue Research. 1975, 4, 1.
    25. French, M. F.; Mookhtiar, K. A. and Wart, H. E. V.; Biochem. 1986, 26, 681.
    26. Fratzl, P.; Collagen: Structure and Mechanics. New York: Springer. 2008.
    27. Buehler, M. J.; PNAS. 2006, 103 (33), 12285.
    28. Nold, J. G.; Kang, A. H.; J. Gross, Science. 1970, 170, 1096.
    29. Woodhead-Galloway, J.; Hukins, D. W. L. and Wray, J. S.; Biochem Biophys Res Commun. 1975, 64, 1237.
    30. Shoulders, M. D.; Raines, R. T.; Annu Rev Biochem. 2009, 78, 929.
    31. Hulmes, D. J.; J Struct Biol. 2002, 137, 2.
    32. Hulmes, D. J.; Essays Biochem. 1992, 27, 49.
    33. Orgel, J. P.; Miller, A. and Wess, T. J.; PNAS, 2006, 103, 9001.
    34. Hulmes, D. J. ; Miller, A.; Nature. 1979, 282, 878.
    35. Hulmes, D. J. S.; Jesior, J. C.; Miller, A.; Berthet-Colominas, C. and Wolff, C.; Proc. Natl. Acad. Sci. 1981, 78, 3567.
    36. Timpl, R. Piez, K. A. and Reddi, A. H.; Extracellular Matrix Biochemistry. 1984, 159.
    37. Samuel, C. S.; Coghlan, J. P. and Bateman, J. F.; J. Endocrinol. 1998, 159, 117.
    38. Kohmura, E.; Yuguchi, T.; Yoshimine, T.; Fujinaka, T.; Koseki, N.; Sano, A.; Kishino, A.; Nakayama, C.; Sakaki, T.; Nonaka, M.; Takemoto, O. and Hayakawa, T. Brain Res. 1999, 849, 235.
    39. Jerome, A.; Ramshaw, J. A.; Biomaterials. 1992, 9, 137.
    40. Rao, K. P.; J. Biomater. Sci. 1995, 7, 623.
    41. Friess, W.; Eur. J. Pharm. Biopharm. 1998, 45, 113.
    42. Fujioka, K.; Maeda, M.; Hojo, T. and Sano, A.; Adv. Drug. Del. Rev. 1998, 31, 247.
    43. Maeda, M.; Tani, S.; Sano, A. and Fujioka, K.; J. Controlled. Rel. 1999, 62, 313.
    44. Olsen, D.; Yang, C.; Bodo, M.; Chang, R. and Leigh, S.; Adv. Drug Deliv. Rev. 2003, 55, 1547.
    45. Lyerly, D. M.; Kreger, A. S.; Infect. Immun. 1983, 40, 113.
    46. Harper, E.; Annu. Rev. Biochem. 1980, 49, 1063.
    47. Lim, D. V.; Jackson, R. J. and Pull-VonGruenigen, C. M.; J. Microbiol. Methods. 1993, 18, 241.
    48. Makinen, P. L.; Clewell, D. B.; An, F. and Makinen, K. K.; J. Biol. Chem. 1989, 264, 3325.
    49. Robertson, P. B.; Cobb, C. M.; Taylor, R. E. and Fullmer, H. M.; J. Periodontal Res. 1974, 9, 81.
    50. Sojar, H. T.; Lee, J. T.; Bedi, G. S. and Genco, R. J.; Infect. Immun. 1993, 61, 2369.
    51. Uitto, V. J.; Raeste, A. M.; J. Dent. Res. 1978, 57, 844.
    52. Nakajima, M.; Atsumi, K.; Kifune, K.; Muira, K. and Kanamaru, H.; Jpn. J. Surg. 1986, 16, 418.
    53. Luyen, D.V.; Rossbach, V.; Chemiefasren/Text. Ind. 1992, 42, 94.
    54. Muzzarelli; R. A. A. Chitin, Pergamon, Oxford, England. 1977, 5-44.
    55. Hirano, S.; Matsumura, T.; Carbohydr. Res. 1987, 165, 120.
    56. Liu, X. F.; Guan, Y. L.; Yang, D. Z.; Li, Z. and Yao, K. D.; J. Appl. Polym. Sci. 2001, 79, 1324.
    57. Gerasimenko, D. V.; Avdienko, I. D.; Bannikova, G. E.; Zueva, O. Y. and Varlamov, V. P.; Appl. Biochem. Microbiol. 2004, 40, 301.
    58. Sashiwa, S.; Saimoto, H.; Shigemasa, R.; Ogawa, R. and Tokura, S.; Int. J. Biol.Macromol. 1990, 12, 295.
    59. Tanigawa, T.; Tanaka, Y.; Shashiwa, H.; Saimoto, H. and Y. Shigemasa. Advances in Chitin and Chitosan; Brione, C.J.; Sandford, P.A.; Zikakis, J.P., Eds; Elsevier Science Publishers Ltd.: London, New York. 1992, 156-161.
    60. Fang, S. W.; Li, C. F. and Shih, D. Y. C.; J. Food Protect. 1994, 56, 136.
    61. Konrad, E.; Gross, P. and Mager, H.; Eur. Pat. Appl. 1978, 2, 506.
    62. Shigemasa, Y.; Minami, S.; Biotechnol. Genetic Eng. Rev. 1995, 13, 383.
    63. Mucha, M.; Macromol. Chem. Phys. 1997, 198, 471.
    64. Wu, S.; Shen, J.; J. Appl. Polym. Sci. 1996, 60, 2159.

    無法下載圖示 全文公開日期 2016/05/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE