簡易檢索 / 詳目顯示

研究生: 薛永駿
Yung-chun Hsueh
論文名稱: 引擎之正時蓋板的結構振動與噪音研究
On the Study of the Vibration and Noise of an Engine's Front Cover
指導教授: 徐茂濱
Mau-Pin Hsu  
口試委員: 楊條和
Tyau-Her Young  
洪振發
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 引擎正時蓋板有限元素法邊界元素法最佳化振動噪音
外文關鍵詞: Engine, Front cover, Finite element method, Boundary element method, Optimization, Vibration, Noise
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究所建立之引擎數值模擬分析,係使用有限元素軟體與邊界元素軟體分別進行強制振動與聲學響應分析,並探討引擎於2400與2800 rpm之聲功率與聲壓分佈。從聲學分析結果中可知,引擎之板殼類元件對於整體引擎的噪音貢獻量皆較大,因此本研究針對正時蓋板進行結構修改,調整原自然頻率並避開其他模態,以加強剛性進而降低噪音。

本研究利用增加肋條的方式來加強正時蓋板的結構剛性,而肋條之佈建位置初步雖已由本研究中研判得知,稍後亦已藉由ANSYS軟體之最佳化分析可找出肋條之最佳位置。正時蓋板之原自然頻率為1266 Hz,依本研究研判增加肋條後,其自然頻率提高為1300 Hz(上升34 Hz),增加之肋條重量為110.1 g(佔原重量之3.1 %);而藉由最佳化分析增加肋條後,其自然頻率為1306 Hz(上升40 Hz),然肋條重量僅為85.5 g(佔原重量之2.4 %)。故以最佳化分析增加結構剛性,可得到較佳的剛性/質量比值。本研究最後將結構修改前後之正時蓋板代入整體引擎中進行強制振動與聲學分析,求得整體引擎之聲功率。結構修改後之整體引擎之聲功率從修改前的66.9 dB降至66.0 dB(下降0.9 dB),且於正時蓋板側之最大聲壓值下降了3.3 dB,此結果顯示增加正時蓋板之剛性可有效降低特定頻率之噪音量。


To establish a numerical simulation analysis for engines, this study used finite element software and boundary element software for forced vibration and acoustic response analysis, respectively. The authors also discussed the acoustic power and acoustic pressure distribution of engines at 2400 and 2800 rpm. Results from the acoustic analysis suggest that for the whole engine per se, shell components have a greater noise contribution. Therefore, this study carried out some structural modifications on the front cover, adjusted the original natural frequency, and avoided it from other modes to reinforce its stiffness and reduce the noises.

This study stiffened the front cover structure by including additional ribs. Placement of the ribs was initially determined by the study result, but later, it was improved by the optimization analysis of ANSYS software. The original natural frequency of the front cover was 1266Hz, but after adding more ribs, the natural frequency was increased to 1300 Hz (an increase of 34 Hz). The weight of the added ribs was 110.1g (3.1% of the original weight). Therefore, using the optimization analysis approach to increase the structural stiffness can render a more optimum stiffness/weight ratio. Last but not the least, the study integrated the modified front cover into the whole engine and carried out forced vibration and acoustic response analysis to obtain the acoustic power of the whole engine. After modifying the structure, the sound power of the whole engine was reduced from 66.9 dB to 66.0 dB (a 0.9dB decrease). Furthermore, the maximum sound pressure at the edge of the front cover had a 3.3 dB decrease. These findings have revealed that increasing the stiffness of the front cover can effectively reduce the volume of noises at certain frequency.

摘要.............................................................................................................I ABSTRACT..............................................................................................II 致謝..........................................................................................................III 目錄..........................................................................................................IV 圖目錄....................................................................................................VII 表目錄....................................................................................................XII 第一章 緒論............................................................................................1 1.1 前言............................................................................................1 1.2 研究動機與目的........................................................................2 1.3 文獻回顧與整理........................................................................2 1.4 本文架構....................................................................................7 第二章 空心圓柱聲壓量測之實驗與模擬............................................9 2.1 實驗儀器介紹與設置................................................................9 2.2 實驗步驟..................................................................................15 2.2.1 加速度量測實驗............................................................15 2.2.2 聲壓量測實驗................................................................16 2.3 空心圓柱之聲場模擬..............................................................17 2.4 實驗與模擬結果比對..............................................................19 2.5 小結..........................................................................................25 第三章 整體引擎強制振動與聲學分析..............................................26 3.1 整體引擎有限元素與邊界元素模型......................................26 3.2 整體引擎強制振動分析..........................................................28 3.2.1 整體引擎振動響應之觀察點........................................28 3.2.2 引擎於2400 rpm下之入力分析....................................40 3.2.3 引擎於2800 rpm下之入力分析....................................47 3.3 強制振動分析結果..................................................................53 3.3.1 引擎於2400 rpm下之強制振動分析結果....................53 3.3.2 引擎於2800 rpm下之強制振動分析結果....................59 3.4 聲學分析結果..........................................................................61 3.4.1 引擎於2400 rpm下之聲學分析結果............................61 3.4.2 引擎於2800 rpm下之聲學分析結果............................64 3.5 小結..........................................................................................66 第四章 正時蓋板之結構最佳化..........................................................67 4.1 正時蓋板之最佳化目標..........................................................68 4.2 正時蓋板之結構修改..............................................................70 4.3 正時蓋板之最佳化..................................................................72 4.3.1 最佳化分析流程與設置................................................72 4.3.2 正時蓋板之實驗設計分析與最佳化分析....................75 4.3.3 正時蓋板改良後之模擬與驗證....................................90 4.4 小結..........................................................................................96 第五章 結論與未來建議......................................................................97 5.1 結論..........................................................................................97 5.2 未來研究方向與建議..............................................................99 參考文獻................................................................................................100 附錄 A...................................................................................................102

[1] Athavale, S.M., and Sajanpawar P. R., “Analytical Studies on Influence of Crankshaft Vibrations on Engine Noise Using Integrated Parametric Finite Element Model: Quick Assessment Tool,” SAE 1999-01-1769, 1999.
[2] Chabot L., “Noise and Vibration Optimisation of a Gasoline Engine,” PSA Group 網站(http://www.ricardo.com/)
[3] François, G., Michel, T., Naji, E. M., and Luc, C., “Acoustic Transfer Vectors for Numerical Modeling of Engine Noise,” LMS International , 2002.
[4] Gomes, E., Breida, M. “NVH Optimization of the 1.2L DIATA Engine,” SAE 2003-01-1697, 2003.
[5] Lahey, H. P., Steffens, C., and Schultz, C., “Simulation Method for Geartrain NVH Assessment and Optimization,” SAE 2001-01-1593, 2001.
[6] Lu, Y. C., and D’Souza, K., “Acoustic Analysis of Isolated Engine Valve Covers,” SAE 2003-01-1674, 2003.
[7] McCulloch, C., Tournour, M., and Guisset, P., “Modal Acoustic Transfer Vectors Make Acoustic Radiation Models Practical for Engines and Rotating Machinery,” 2001.
[8] Nehl, J., Steffens, C., and Nussmann, C., “Virtual NVH Powertrain Development,” 2006.
[9] Nunes, R. F., Nogueira, C. F., Argentino, M. A., and Hackenbroich, D.,
“Development of an Air Intake System Using Vibro-Acoustics Numerical Modeling,”SAE 2001-01-1519, 2001
[10] Payer, E., “Advanced Numerical Simulation Techniques for the Fatigue and NVH Optimization of Engines,” The 2nd MSC Worldwide Automotive Conference, 2000.
[11] Priebsch, H. H., Herbst, H., Offner, G., and Sopouch, M., “Numerical Simulation and Verification of Mechanical Noise Generation in Combustion Engines,” ISMA2004 Conference , 2004.
[12] Robinson, J., Hussain, K., and Day, A., “NVH Optimisation of Automotive Engine Components Using Design of Experiments and Computer Aided Engineering Techniques,” Masters’ conference 2004, University of Bradford, 2004.
[13] Stout, J. L., “Concept Level Powertrain Radiated Noise Analysis,” SAE 1999-01-1746, 1999.
[14] Wolf, A., Gaertner U. and Droege T., “Noise Reduction and Sound Design for Diesel Engines – An Achievable Development Target for US Passenger Cars?” SAE 2003-01-1719, 2003.
[15] Yamamoto, K., Naritomi, T., “Design Optimization of Engine Bolts in Noise and Vibration Performance Development Using FEM,” SAE 2006-01-0282, 2006.
[16] Zhang, J., and Han, J., “CAE Process to Simulate and Optimise Engine Noise and Vibration,” Mechanical Systems and Signal Processing 20, 2006.
[17] Zhou, M., and Emery, J., “Exhaust Manifold Radiated Noise Prediction Methodology,” SAE 2001-01-1433, 2001.
[18] 李嘉維,以有限元素法分析引擎元件之振動,台灣科技大學機械工程研究所碩士論文,2010。
[19] 林毅欣,以有限元素法分析汽油引擎之振動,台灣科技大學機械工程研究所碩士論文,2010。
[20] 黃建文,引擎之油底殼的結構振動與噪音研究,台灣科技大學機械工程研究所碩士論文,2011。
[21] 曾建誠、陳常侃、王鵬華、丁建均,離散時間訊號處理(第二版),全華科技圖書股份有限公司,2005。
[22] 宗孔德、胡廣書,數位訊號處理,儒林圖書有限公司,1992。
[23] 林傳生,Matlab之使用與應用,儒林圖書有限公司,1996。
[24] 張印本、楊良太、施議訓、理工科技顧問有限公司,金屬材料對照手冊(第四版),全華圖書股份有限公司,2009。
[25] 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技圖書股份有限公司,2005。

無法下載圖示 全文公開日期 2016/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE