簡易檢索 / 詳目顯示

研究生: 李元傑
Yuan-Jie Lee
論文名稱: 針對神經新生應用之鋁/鋯摻雜噴霧乾燥生物活性玻璃的製備與特性分析
Preparation and characterization of Al and Zr-doped spray-dried bioactive glass microspheres targeting neurogenesis applications
指導教授: 周育任
Yu-Jen Chou
口試委員: 周育任
Yu-Jen Chou
施劭儒
Shao-Ju Shih
王丞浩
Cheng-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 生物活性玻璃噴霧乾燥法神經元體外生物活性鋁摻雜鋯摻雜
外文關鍵詞: Bioactive glass, Spray drying, Neurons, In vitro bioactivity, Aluminum, Zirconium
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

當脊髓損傷時,將神經幹細胞移植至損傷部位,能有機會使其分化為神經元並能重建部分神經迴路與功能,由於神經幹細胞本身的分化並不受控制,因此必須藉由外力誘導(例如:磁場),但磁信號之誘導方式需要將磁性奈米粒子放入生長中的神經幹細胞,再加上外部磁場作用後方能具有效果,但此方磁場法協同機制相對複雜。根據文獻指出氧化鋁與神經前驅幹細胞有生物相容性,而摻雜氧化鋯之生物活性玻璃能促進間質幹細胞增殖,因此本研究提出一種使用噴霧乾燥技術製備之摻雜氧化鋁之生物活性玻璃和摻雜氧化鋯之生物活性玻璃來測試是否對於神經元之分化有顯著效益。
由於噴霧乾燥法與其他常見生物活性玻璃粉末製程方式相比擁有製程溫度較低、粉末純度高、形貌易控制及當日產量較高等優點,因此本研究將神經幹細胞之增值與分化定為首要目標,並於探討氧化鋁摻雜與氧化鋯摻雜之生物活性玻璃之形貌、晶體結構、體外生物活性等特性。


When there is spinal cord injury, transplanting neural stem cells to the injury site holds the potential to induce their differentiation into neurons and facilitate the reconstruction of partial neural circuits and functions. Due to the uncontrolled differentiation of neural stem cells, external forces, such as a magnetic field, are necessary for induction. However, the induction mechanism of magnetic signals is complex and involves incorporating magnetic nanoparticles into growing neural stem cells, followed by the application of an external magnetic field for effectiveness.
According to literature, aluminum oxide exhibits biocompatibility with neural precursor cells, and bioactive glass doped with zirconium oxide promotes the proliferation of mesenchymal stem cells. Therefore, this study proposes the use of bioactive glasses doped with aluminum oxide and zirconium oxide, prepared using spray drying technology, to investigate their potential benefits for the differentiation of neurons.
Due to the advantages of spray drying over other common processes for bioactive glass powder production, including lower processing temperatures, higher powder purity, easy morphology control, and higher daily production yield, this research prioritizes the enhancement and differentiation of neural stem cells. The study will also explore the morphology, crystal structure, and in vitro bioactivity of bioactive glasses doped with aluminum oxide and zirconium oxide.

摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 神經幹細胞 3 2.1.1 神經退化性疾病與神經受損 3 2.1.2 神經損傷治療 4 2.1.3 鋁 4 2.1.4 鋯 6 2.2 生物活性材料 8 2.2.1 生醫陶瓷 8 2.2.2 氫氧基磷灰石 9 2.2.3 生物活性玻璃 10 2.3 生物活性玻璃 11 2.3.1 生物活性玻璃之活性機制 11 2.3.2 生物活性玻璃之鍵結機制 12 2.3.3 生物活性玻璃摻雜功能性元素 16 2.4 生物活性玻璃合成方法 18 2.4.1 傳統玻璃製程(Conventional glass process) 19 2.4.2 溶膠-凝膠法(Sol-gel method) 20 2.4.3 噴霧熱解法(Spray pyrolysis) 21 2.4.4 噴霧乾燥法(Spray drying) 22 第三章 實驗方法 24 3.1 實驗設計與實驗流程 24 3.2 樣品製備儀器介紹 27 3.3 分析儀器與方法介紹 30 3.3.1 X光繞射儀(X-ray diffractometer, XRD) 31 3.3.2 場發射雙束型聚焦離子束顯微鏡(Dual beam focused ion beam scanning electron microscope, FIB-SEM) 32 3.3.3 傅立葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy, FTIR) 33 3.3.4 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 33 3.3.5 體外生物活性試驗 34 3.4 體外細胞測試 36 3.4.1 細胞存活率分析(MTT assay-MC3T3) 36 3.4.2 細胞存活率分析(MTT assay-L929) 37 3.4.3 神經幹細胞分化試驗 38 第四章 結果與討論 39 4.1 生物活性玻璃之基礎性質分析 39 4.1.1 X光繞射分析(XRD) 39 4.1.2 形貌及粒徑分析(FIB-SEM) 41 4.1.3 元素比例分析(FIB-EDS) 46 4.1.4 材料表面定性分析(XPS) 47 4.2 生物活性分析 49 4.2.1 X光繞射分析 49 4.2.2 形貌分析(FIB_SEM) 52 4.2.3 元素比例分析(FIB_EDS) 54 4.2.4 材料表面定性分析(XPS) 56 4.2.5 傅立葉轉換紅外線光譜分析(FTIR) 58 4.3 體外細胞實驗 61 4.3.1 細胞存活率分析(MTT) 61 4.3.2 神經幹細胞分化與誘導實驗 63 第五章 實驗討論 64 5.1 鋁摻雜與鋯摻雜對生物活性玻璃顆粒形貌之影響 64 5.2 鋁摻雜與鋯摻雜對生物活性之影響 65 5.2.1 鋁摻雜對生物活性之影響 65 5.2.2 鋯摻雜對生物活性之影響 66 5.3 鋁摻雜與鋯摻雜對MC3T3細胞之影響 67 5.4 鋁摻雜與鋯摻雜對L929細胞之影響 67 5.5 鋁摻雜與鋯摻雜對神經幹細胞分化之影響 68 第六章 結論 69 第七章 未來工作 70 第八章 參考文獻 71

[1] Steinmetz, J. D., Seeher, K. M., Schiess, N., Nichols, E., Cao, B., Servili, C., Cavallera, V., Cousin, E., Hagins, H., Moberg, M. E., Mehlman, M. L., Abate, Y. H., Abbas, J., Abbasi, M. A., Abbasian, M., Abbastabar, H., Abdelmasseh, M., Abdollahi, M., Abdollahi, M., … Dua, T. (2024). Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. The Lancet Neurology, 23(4), 344–381.
[2] Joshua E. Woods et al, Miniature battery-free epidural cortical stimulators.Sci. Adv.10, eadn0858(2024).
[3] Martinez AN, Philipp MT. Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System. J Neurol Neuromedicine. 2016;1(2):29-36.
[4] Scandella, Valentina 2023. 「Neural Stem Cell Metabolism Revisited: A Critical Role for Mitochondria」. Trends in Endocrinology & Metabolism 34(8): 446–61.
[5] Chavan, Ritu S., Krishna V. Supalkar, Smeeta S. Sadar, and Niraj S. Vyawahare 2023. 「Animal Models of Alzheimer’s Disease: An Origin of Innovative Treatments and Insight to the Disease’s Etiology」. Brain Research 1814: 148449.
[6] Liu, Xiaoyun 2021. 「3D Bioprinted Neural Tissue Constructs for Spinal Cord Injury Repair」. Biomaterials 272: 120771.
[7] Jin, Michael C 2019. 「Stem Cell Therapies for Acute Spinal Cord Injury in Humans: A Review」. Neurosurgical Focus 46(3): E10.
[8] Zhang, Junwei 2023. 「Magnetic Chitosan Hydrogel Induces Neuronal Differentiation of Neural Stem Cells by Activating RAS-Dependent Signal Cascade」. Carbohydrate Polymers 314: 120918.
[9] Bargavi, P 2022. 「Drug Infused Al2O3-Bioactive Glass Coatings toward the Cure of Orthopedic Infection」. Progress in Biomaterials 11(1): 79–94.
[10] Rahmati, Maryam, Masoud Mozafari 2019. 「Biocompatibility of Alumina‐based Biomaterials–A Review」. Journal of Cellular Physiology 234(4): 3321–35.
[11] El-Kheshen, A.A., F.A. Khaliafa, E.A. Saad及R.L. Elwan 2008. 「Effect of Al2O3 Addition on Bioactivity, Thermal and Mechanical Properties of Some Bioactive Glasses」. Ceramics International 34(7): 1667–73.
[12] Ö.H. Andersson, A. SÖdergrad「Solubility and film formation of phosphate and alumina containing silicate glasses」J. Non-Cryst. Solids, 246 (1999), pp. 9-15
[13] Asimakopoulou, Akrivi 2020. 「Biocompatibility of α-Al2O3 Ceramic Substrates with Human Neural Precursor Cells」. Journal of Functional Biomaterials 11(3): 65.
[14] Pattnaik, Soumitri 2011. 「Chitosan Scaffolds Containing Silicon Dioxide and Zirconia Nano Particles for Bone Tissue Engineering」. International Journal of Biological Macromolecules 49(5): 1167–72.
[15] Bhowmick, Arundhati 2017. 「Development of Bone-like Zirconium Oxide Nanoceramic Modified Chitosan Based Porous Nanocomposites for Biomedical Application」. International Journal of Biological Macromolecules 95: 348–56.
[16] Kang, Tae‐Yun 2021. 「Improvement of the Mechanical and Biological Properties of Bioactive Glasses by the Addition of Zirconium Oxide (ZrO 2 ) as a Synthetic Bone Graft Substitute」. Journal of Biomedical Materials Research Part A 109(7): 1196–1208.
[17] Dion, I 1994. 「Physico-Chemistry and Cytotoxicity of Ceramics: Part II Cytotoxicity of Ceramics」. Journal of Materials Science: Materials in Medicine 5(1): 18–24.
[18] Warashina, Hidek 2003. 「Biological Reaction to Alumina, Zirconia, Titanium and Polyethylene Particles Implanted onto Murine Calvaria」. Biomaterials 24(21): 3655–61.
[19] Rabiee, Sayed Mahmood 「Effect of Ion Substitution on Properties of Bioactive Glasses: A Review」. Ceramics International 41(6): 7241–51.
[20] Zhu, Yufang 「The Effect of Zirconium Incorporation on the Physiochemical and Biological Properties of Mesoporous Bioactive Glasses Scaffolds」. Microporous and Mesoporous Materials 143(2–3): 311–19.
[21] Kasuga, Toshihiro 1992. 「Bioactivity of Zirconia-Toughened Glass-Ceramics」. Journal of the American Ceramic Society 75(7): 1884–88.
[22] Quan, Renfu 2013. 「Study on the Genotoxicity of HA/ZrO2 Composite Particles in Vitro」. Materials Science and Engineering: C 33(3): 1332–38.
[23] Shao, Rongxue 2015. 「Porous Hydroxyapatite Bioceramics in Bone Tissue Engineering: Current Uses and Perspectives」. Journal of the Ceramic Society of Japan 123(1433): 17–20.
[24] Paul, Will 「Table 1: Biomedical Applications of Bioceramics」.
[25] Dorozhkin, Sergey V 2010. 「Bioceramics of Calcium Orthophosphates」. Biomaterials 31(7): 1465–85.
[26] S. Hulbert, L. Hench, D. Forbers, L. Bowman, History of bioceramics, Ceramics
international, 8 (1982) 131-140
[27] G.P. Jayaswal, S. Dange, A. Khalikar, Bioceramic in dental implants: A review, The Journal of Indian Prosthodontic Society, 10 (2010) 8-12
[28] M. Manzano, M. Vallet-Regí, Revisiting bioceramics: bone regenerative and local drug delivery systems, Progress in Solid State Chemistry, 40 (2012) 17-30.
[29] Koutsopoulos, S 2002. 「Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods」. Journal of Biomedical Materials Research 62(4): 600–612.
[30] K. De Groot, Medical applications of calciumphosphate bioceramics, Journal of the Ceramic Society of Japan 99 (1154) (1991) 943-953
[31] Chai CS, Ben-Nissan B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. J Mater Sci: Mater Med. 1999; 10: 465-469.
[32] Manafi SA, Joughehdoust S. Synthesis of hydroxyapatite nanostructure by hydrothermal condition for biomedical application. Iranian J Pharm Sci. 2009; 5(2): 89-94.
[33] R.R. Rao, H.N. Roopa, T.S. Kannan, Solid state synthesis and thermal stability of HAP and HAP – β-TCP composite ceramic powders, Journal of Materials Science: Materials in Medicine 8 (8) (1997) 511-518.
[34] Tas AC. Synthesis of biomimetic Cahydroxyapatite powders at 37 degrees C in synthetic body fluids. Biomaterials. 2000; 21:1429-1438.
[35] Thamaraiselvi TV, Prabakaran K, Rajeswari S.Synthsis of hydroxyapatite that mimic bone mineralogy. Trends Biomater Artif Org. 2006;19(2): 81-83.
[36] Shikhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci: Mater Med. 1998; 9: 67-72.
[37] Nayak, Amit Kumar, 「Hydroxyapatite Synthesis Methodologies: An Overview」.
[38] Fathi, M.H., 及A. Hanifi, 2007. 「Evaluation and Characterization of Nanostructure Hydroxyapatite Powder Prepared by Simple Sol–Gel Method」. Materials Letters 61(18): 3978–83.
[39] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic
society, 74 (1991) 1487-1510.
[40] Xia, Wei, 及Jiang Chang, 2006. 「Well-Ordered Mesoporous Bioactive Glasses (MBG): A Promising Bioactive Drug Delivery System」. Journal of Controlled Release 110(3): 522–30.
[41] Xia, W.; Chang, J. Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system. J. Control. Release 2006, 110, 522–530.
[42] Salinas, A.J, Shruti, S.; Malavasi, G, Menabue, L, Vallet-Regí, M. Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 2011, 7, 3452–3458.
[43] Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.; Fischer, H. Bioactive and thermally compatible glass coating on zirconia dental implants. J. Dent. Res. 2015, 94, 297–303.
[44] Christie, J.K.; Malik, J.; Tilocca, A. Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: Investigating the structural effects of yttrium. Phys. Chem. Chem. Phys. 2011, 13, 17749–17755.
[45] Tilocca, A. Realistic models of bioactive glass radioisotope vectors in practical conditions: Structural effects of ion exchange. J. Phys. Chem. C 2015, 119, 27442–27448.
[46] P. Ducheyne, Bioceramics: material characteristics versus in vivo behavior, Journal of Biomedical Materials Research (1987) 219.
[47] A. Clark Jr, C. Pantano Jr, L. Hench, Auger spectroscopic analysis of bioglass corrosion films, Journal of the American Ceramic Society, 59 (1976) 37-39.
[48] Kaur, Gurbinder, 2014. 「A Review of Bioactive Glasses: Their Structure, Properties, Fabrication and Apatite Formation」. 102(1).
[49] Li, R., A. E. Clark, L. L. Hench, 1991. 「An Investigation of Bioactive Glass Powders by Sol-Gel Processing」. Journal of Applied Biomaterials 2(4): 231–39.
[50] Chou, Yu-Jen, 2018. 「Preparation and in Vitro Bioactivity of Micron-Sized Bioactive Glass Particles Using Spray Drying Method」. Applied Sciences 9(1): 19.
[51] Balamurugan, A., 2008. 「An in Vitro Biological and Anti-Bacterial Study on a Sol–Gel Derived Silver-Incorporated Bioglass System」. Dental Materials 24(10): 1343–51.
[52] S. Luo, W. Xiao, X. Wei, W. Jia, C. Zhang, W. Huang, D. Jin, M.N. Rahaman, D.E. Day, 「In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass」J. Biomed. Mater. Res. Part B: Appl. Biomater., 95B (2010), p. 441
[53] M. Bellantone, N.J. Coleman, L.L. Hench「Bacteriostatic action of a novel four-component bioactive glass」J. Biomed. Mater. Res., 51 (2000), pp. 484-490
[54] Ma, J., C.Z. Chen, D.G. Wang, J.H. Hu, 2011. 「Synthesis, Characterization and in Vitro Bioactivity of Magnesium-Doped Sol–Gel Glass and Glass-Ceramics」. Ceramics International 37(5): 1637–44.
[55] A. Balamurugan, G. Balossier, J. Michel, S. Kannan, H. Benhayoune, A.H.S. Rebelo, J.M.F. Ferreira「Sol gel derived SiO2–CaO–MgO–P2O5 bioglass system-preparation and in vitro characterization」J. Biomed. Mater. Res. Part B:Appl. Biomater., 83 (2007), pp. 546-553
[56] M. Vallet-Regi, A.J. Salinas, J. Roman, M. Gil「Effect of magnesium content on the in vitrobioactivity of CaO–MgO–SiO2–P2O5 sol–gel glasses」J. Mater. Chem., 9 (1999), pp. 515-518
[57] S. Dahl, P. Allain, P. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.Delmas, C. 「Christiansen, Incorporation and distribution of strontium in bone」, Bone, 28 (2001) 446-453.
[58] Gentleman, Eileen, 2010. 「The Effects of Strontium-Substituted Bioactive Glasses on Osteoblasts and Osteoclasts in Vitro」. Biomaterials 31(14): 3949–56.
[59] M. Vallet-Regí, et al., Ceramics as bone repair materials, Bone repair biomaterials, Elsevier Regeneration and clinical applications 2019, pp. 141-178.
[60] J. Liu, et al., Sol–gel derived bioglass as a coating material for porous lumina scaffolds, Ceramics international 30 (2004) 1781-1785.
[61] Izquierdo-Barba, Isabel, Antonio J. Salinas, María Vallet-Regí, 2013. 「Bioactive Glasses: From Macro to Nano」. International Journal of Applied Glass Science 4(2): 149–61.
[62] Ben-Arfa, Basam A. E., Isabel M. Miranda Salvado, José M. F. Ferreira及Robert C. Pullar, 2017. 「A Hundred Times Faster: Novel, Rapid Sol-Gel Synthesis of Bio-Glass Nanopowders (Si-Na-Ca-P System, Ca:P = 1.67) without Aging」. International Journal of Applied Glass Science 8(3): 337–43.
[63] F.B.A. Ahad, et al., Magnetoelectric behavior of carbonyl iron mixed Mnoxide-coated ferrite nanoparticles, Journal of Applied Physics 107 (2010) 09D904.
[64] Hong, Bo-Jiang, 2018. 「Effect of Acetic Acid Concentration on Pore Structure for Mesoporous Bioactive Glass during Spray Pyrolysis」. Materials 11(6): 963.
[65] Messing, Gary L., Shi-Chang Zhang及Gopal V. Jayanthi, 1993. 「Ceramic Powder Synthesis by Spray Pyrolysis」. Journal of the American Ceramic Society 76(11): 2707–26.
[66] Shih SJ, Wu YY, Borisenko KB (2011) Control of morphology and dopant distribution in yttrium-doped ceria nanoparticles. J Nanopart Res 13:7021–7028
[67] Shih SJ, Wu YY, Chen CY, Yu CY (2012) Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis. J Nanopart Res 14:1–9
[68] Shih, Shao-Ju, Yu-Jen Chou及I-Chen Chien, 2012. 「One-Step Synthesis of Bioactive Glass by Spray Pyrolysis」. Journal of Nanoparticle Research 14(12): 1299.
[69] S.-J. Shih, et al., Nanoscale yttrium distribution in yttrium-doped ceria powder, Journal of Nanoparticle Research 11 (2009) 2145-2152.
[70] Stunda-Zujeva, Agnese, Zilgma Irbe, Liga Berzina-Cimdina, 2017. 「Controlling the Morphology of Ceramic and Composite Powders Obtained via Spray Drying – A Review」. Ceramics International 43(15): 11543–51.
[71] Elversson, Jessica, Anna Millqvist-Fureby, 2005. 「Particle Size and Density in Spray Drying—Effects of Carbohydrate Properties」. Journal of Pharmaceutical Sciences 94(9): 2049–60.
[72] Ningsih, Henni Setia, Yu-Cheng Liu, Jiun-Wen Chen, Yu-Jen Chou, 2022. 「Effects of Strontium Dopants on the in Vitro Bioactivity and Cytotoxicity of Strontium-Doped Spray-Dried Bioactive Glass Microspheres」. Journal of Non-Crystalline Solids 576: 121284.
[73] Y. Sugiyama, R. J. Larsen, J.-W. Kim, and D. A. Weitz. Buckling and crumpling of drying droplets of colloid–polymer suspensions. Langmuir22:6024–6030 (2006).
[74] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharmaceutical research, 25 (2008) 999-1022.
[75] N. Tsapis, D. Bennett, B. Jackson, D. A. Weitz, and D. A. Edwards. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl. Acad. Sci. USA99:12001–12005 (2002)
[76] Ohtsuki, Chikara, Tadashi Kokubo, Takao Yamamuro, 「Compositional Dependence of Bioactivity of Glasses in the System CaO-SiO2-AI203: Its in Vitro Evaluation」.
[77] Melchers, S., Uesbeck, T., Winter, O., Eckert, H., & Eder, D.. Effect of Aluminum Ion Incorporation on the Bioactivity and Structure in Mesoporous Bioactive Glasses. Chemistry of Materials, 28(10), 3254–3264. (2016)
[78] Tallia F, Gallo M, Pontiroli L, et al. Zirconia-containing radiopaque mesoporous bioactive glasses. Mater Lett. 2014; 130: 281-284.
[79] M. Nogami, Glass preparation of the ZrO2 SiO2 system by the sol-gel process from metal alkoxides, J Non Cryst Solids, 69 (1985), pp. 415-423
[80] A. Moghanian, M. Zohourfazeli, M. H. M. Tajer, The effect of zirconium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass, Journal of Non-Crystalline Solids, 546 (2020) 120262
[81] Zhu, Yufang, Yufeng Zhang, Chengtie Wu, Ying Fang, Junhe Yang及Shulin Wang, 「The Effect of Zirconium Incorporation on the Physiochemical and Biological Properties of Mesoporous Bioactive Glasses Scaffolds」. Microporous and Mesoporous Materials, 143 (2011): 311–19

[82] H. Atalay, A. Çeli̇k, and F. Ayaz, “Investigation of genotoxic and apoptotic effects of zirconium oxide nanoparticles (20 nm) on L929 mouse fibroblast cell line,” Chemico-Biological Interactions, vol. 296, pp. 98–104
[83] Q. Wang, Z. Ma, Y. Wang, L. Zhong, and W. Xie, “Fabrication and characterization of 3D printed biocomposite scaffolds based on PCL and zirconia nanoparticles,” Bio-des. Manuf., vol. 4, no. 1, pp. 60–71, Mar. 2021
[84] I. O. Igbokwe, E. Igwenagu, and N. A. Igbokwe, “Aluminium toxicosis: a review of toxic actions and effects,” Interdisciplinary Toxicology, vol. 12, no. 2, pp. 45–70, Oct. 2019
[85] A. V. Skalny et al., “Molecular mechanisms of aluminum neurotoxicity: Update on adverse effects and therapeutic strategies,” in Advances in Neurotoxicology, vol. 5, Elsevier, 2021, pp. 1–34.
[86] J. A. Rincón‐López et al., “Mineral matrix deposition of MC3T3‐E1 pre‐osteoblastic cells exposed to silicocarnotite and nagelschmidtite bioceramics: In vitro comparison to hydroxyapatite,” J Biomedical Materials Res, vol. 112, no. 7, pp. 1124–1137

QR CODE