簡易檢索 / 詳目顯示

研究生: 翁于倫
Yu-Lun Weng
論文名稱: DLP 3D列印多孔陶瓷及其於微過濾與SOFC陽極之應用
DLP 3D Printing Porous Ceramic for Microfiltration and SOFC Anode Application
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 陳建樺
Chien-Hua Chen
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 152
中文關鍵詞: 光固化聚合技術氧化鋁鋯摻雜鋇鈰釔氧化物微過濾固態氧化物然燃料電池多孔陶瓷
外文關鍵詞: Vat polymerization, Alumina, BCZY, Microfiltration, SOFC, Porous ceramics
相關次數: 點閱:420下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多孔陶瓷因其優異的物化特性被廣泛應用於各種領域,然而,傳統製程侷限了幾何結構的設計發想。隨著3D列印技術成熟及其可製造任意結構的優點,陶瓷3D列印技術成為陶瓷製程領域之發展重點。本研究提出以光固化3D列印技術,創造出具有微米以及次微米兩種層級孔洞之多孔陶瓷結構,並應用於微過濾及固態氧化物燃料電池(SOFC)陽極觸媒載體上。
    本研究透過在光固化樹脂中添加氧化鋁以及鋯摻雜鋇鈰釔氧化物( Ba(Ce0.7Zr0.1Y0.2)O3-δ , BCZY)陶瓷粉末,分別調配出高固含量陶瓷漿料並成功列印。研究發現,透過優化樹脂配方降低漿料黏度以及成型參數可有效改善Z軸誤差,減小38%。根據壓汞法(MIP)量測燒結後的氧化鋁及BCZY多孔結構上有0.19至0.24 μm的次微米等級孔隙。平板狀多孔氧化鋁濾膜通量為44.7 L/m2·hr,透過結構設計提升通量約2倍。最後,本研究嘗試列印SOFC陽極,成功添加3 wt%的陽極觸媒材料氧化鎳於BCZY陶瓷漿料中,進行有色陶瓷粉體之列印,並透過原位生長(In-situ)進行二次長晶增加氧化鎳含量。元素分析結果證實,原位生長可有效提升5倍的陽極氧化鎳含量,且分布均勻。


    Porous ceramics are widely used in various fields due to their excellent physical and chemical properties. However, traditional ceramics processing would be powerless of making ceramics with sophisticated structures. Ceramic 3D printing has accordingly emerged in recent years. In this study, we developed a photo-curing 3D printing technology and successfully produced ceramics with coexisting micro and sub-micron pores. Then, the prepared ceramics were applied to microfiltration and the anode catalyst supports of solid oxide fuel cells (SOFCs).
    In this study, high solid content (over 70 wt%) photocurable ceramic slurries consisting of alumina and zirconium-doped barium cerium yttrium oxide (Ba(Ce0.7Zr0.1Y0.2)O3-δ, BCZY) ceramic powders were successfully prepared for 3D printing. Through adjusting printing parameters and the resin formula for lower viscosity, the Z-axis resolution can be effectively improved by 38 %. The alumina and BCZY printed parts contain were demonstrated to have sub-micron pores (0.19-0.24 μm) by using the mercury intrusion porosimetry. The flux of the porous alumina membranes is 44.7 L/m2·hr, and the flux could be enhanced by around 2 times through properly structural design. Finally, the developed 3D printing method was applied to print SOFC anodes using the BCZY ceramic slurry with 3 wt% of nickel oxide (NiO) added. To further increase the content of NiO, the in-situ and secondary growth methods were conducted. Elemental analysis results confirmed that the content of NiO in the anode can be effectively increased by 5 times and well distributed.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究方法與步驟 4 1.4 論文架構 5 第二章 文獻探討 6 2.1 陶瓷材料(Ceramic) 6 2.1.1 氧化鋁(Al2O3) 6 2.1.2 BCZY( Ba(Ce0.7Zr0.1Y0.2)O3-δ ) 7 2.2 多孔陶瓷(Porous ceramics) 8 2.2.1 次微米級孔洞(Sub-micron hole) 10 2.2.2 陶瓷濾膜(Ceramic Membranes) 10 2.2.3 固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC) 13 2.3 多孔陶瓷製程技術 15 2.3.1 部份燒結法(Partial Sintering Method) 16 2.3.2 犧牲模板法(Sacrificial Fugitives Method) 17 2.3.3 複製模板法(Replica Templates Method) 18 2.3.4 直接泡沫法(Direct Foaming Method) 19 2.3.5 分級孔隙製造 19 2.4 多孔結構陶瓷材料之積層製造技術 21 2.4.1 積層製造技術(Additive Manufacturing) 21 2.4.2 陶瓷材料之積層製造技術 23 2.4.3 多孔結構陶瓷之積層製造技術 27 第三章 光固化成型系統與材料介紹 31 3.1 下照式DLP成型系統 31 3.1.1 下照式動態光罩成型系統 31 3.1.2 動態光罩產生器 33 3.2 實驗藥品與設備 35 3.2.1 微電腦數位式黏度計 36 3.2.2 熱重量分析儀(Thermogravimetric analysis,TGA) 38 3.2.3 水銀測孔儀(Mercury Porosimeter) 38 3.3 光固化陶瓷漿料介紹 40 3.3.1 氧化鋁(Al2O3) 40 3.3.2 BCZY( Ba(Ce0.7Zr0.1Y0.2)O3-δ ) 41 3.3.3 氧化鎳(NiO) 41 3.3.4 光固化丙烯酸酯單體 42 3.3.5 三羥甲基丙烷三丙烯酸酯(TMPTA) 43 3.3.6 異冰片基丙烯酸酯(IBOA) 44 3.3.7 光起始劑(TPO) 45 3.3.8 分散劑(Dispersnat) 46 3.4 陶瓷光固化漿料調配方法 48 3.4.1 樹脂基底選擇 48 3.4.2 混合方式改善 51 第四章 氧化鋁陶瓷材料之多孔結構積層製造 54 4.1 氧化鋁漿料調配與最大固含量測試 54 4.2 氧化鋁之成型測試 56 4.2.1 固含量對成型參數影響 56 4.2.2 漿料成型測試 58 4.2.3 固含量對燒結成品之影響 61 4.3 氧化鋁多孔結構成型與燒結成品量測 62 4.3.1 多孔結構成型測試 63 4.3.2 熱重量分析(Thermogravimetric analysis,TGA) 64 4.3.3 燒結曲線設計 65 4.3.4 收縮率與孔洞性質量測 66 4.4 陶瓷濾膜應用 70 4.5 結果與討論 75 第五章 SOFC陽極材陶瓷材料之積層製造 78 5.1 BCZY漿料調配 78 5.1.1 粉體前處理 78 5.1.2 分散劑調整 80 5.1.3 最大固含量測試 82 5.2 BCZY之成型測試 83 5.2.1 固含量對成型參數之影響 83 5.2.2 漿料成型測試 85 5.2.3 固含量對燒結成品之影響 88 5.3 樹脂配方調整與成型參數對誤差之影響 89 5.3.1 光固化樹脂黏度量測 92 5.3.2 樹脂配方優化 92 5.3.3 成型參數優化 95 5.3.4 成型參數整理 100 5.4 多孔結構成型測試與燒結成品量測 101 5.4.1 BCZY多孔結構成型測試 101 5.4.2 熱重量分析(Thermogravimetric analysis,TGA) 103 5.4.3 燒結曲線設計 104 5.4.4 收縮率與孔洞性質量測 105 5.5 有色粉體之漿料調配與成型測試 109 5.5.1 BCZY+氧化鎳之漿料調配 110 5.5.2 最大濃度之氧化鎳 110 5.5.3 SOFC陽極材料多孔結構成型 112 5.6 SOFC陽極材料燒結成品量測 113 5.6.1 孔洞性質分析 113 5.6.2 二次長晶 116 5.6.3 燒結脫脂曲線設計 122 第六章 結論與未來研究方向 125 6.1 結論 125 6.2 未來研究方向 126 參考文獻 127

    [1] SmartTech (2018) “Ceramics Additive Manufacturing Markets 2017-2028” SmartTech Analysis
    [2] Abdecharif Boumaza, Laurent Favaro, Jean Lédion, Gael Sattonnay, Jean Blaise Brubach, Patrick Berthet, Anne Marie Huntz, Pascale Roy, Robert Tétot, (2009) “Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study” Journal of Solid State Chemistry 182(5): 1171-1176
    [3] Andrey Abyzov, (2019) “Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3” Refractories and Industrial Ceramics 60: 24-32
    [4] Takashi Oikawa, Tooru Ookoshi, Tsunehiro Tanaka, Takashi Yamamoto, Makoto Onaka, (2004). “A new heterogeneous olefin metathesis catalyst composed of rhenium oxide and mesoporous alumina” Microporous and Mesoporous Materials 74(1-3): 93-103
    [5] Amit Kumar Yadav, Sunipa Bhattacharyya, (2020) “A review of the emerging ceramic adsorbents for defluoridation of groundwater” Journal of Water Process Engineering 36: 101365
    [6] Yaping Li, Alexander Kolesnikov, Richardson James, Chendong Zuo, Tae Lee, Balu Balachandran, (2005) “Structure, Proton Incorporation and Transport Properties of Ceramic Proton Conductor Ba(Ce0.7Zr0.2Yb0.1)O3-δ” Materials Research Society 835: 45-50
    [7] Masahiko Iijima, Naoki Ito, Shinichi Matsumoto, Satoshi Iguchi, (2011) “Cell Performance Stability of HMFC Using Ba(Ce1-XZrx)0.8Y0.2O3 Perovskite Type Proton Conductor as Electrolyte” Materials Research Society 972: 1-8
    [8] Jhe-Wei Jhuang, Kan-Rong Lee, Jeng-kuei Chang, Chin-Tien Shen, Yi-Hsuan Lee, Sheng-Wei Lee, Chung-Jen Tseng, (2017) “Chemical stability and electrical and mechanical properties of BaZrxCe0.8-xY0.2O3 with CeO2 protection method” International Journal of Hydrogen Energy 42(34): 22259-22265
    [9] Peisheng Liu, Guo-Feng Chen, (2014) “General Introduction to Porous Materials” Porous Materials 12: 1-20
    [10] Ian Nettleship, (1996) “Applications of Porous Ceramics” Key Engineering Materials 122-124: 305–324
    [11] Xiaolong,Zhu, Xue jun Su, (2000) “Porous ceramics materials” China Ceramics 36(4): 36–39
    [12] Tatsuki Ohji, (2013) “Chapter 11.2.2 - Porous Ceramic Materials” Handbook of Advanced Ceramics: Second Edition p.1131-1148
    [13] Changqing Hong, Hong Changqing, Xinghong Zhang, Jiecai Han, Songhe Meng, Shanyi Du, (2012) “Synthesis, microstructure, and properties of high-strength porous ceramics” Ceramic Materials - Progress in Modern Ceramics
    [14] Kang Li, (2007) “Ceramic Membranes for Separation and Reaction” WILEY
    [15] Lim Chin Hwa, Uday Basheer Al-Naib, Norhayati Ahmad, Alias Mohd Noor, Srithar Rajoo, Khidzir Bin Zakaria, (2018) “Integration and fabrication of the cheap ceramic membrane through 3D printing technology” Materials Today Communications 15:134-142
    [16] Hitesh Dommati, Saikat Sinha Ray, Jia-Chang Wang, Shiao-Shing Chen, (2019) “A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification” RSC Adenavces 9:16869-16883
    [17] Saikat Sinha Ray, Hitesh Dommati, Jia-Chang Wang, Shiao-Shing Chen, (2020) “Solvent based Slurry Stereolithography 3D printed hydrophilic ceramic membrane for ultrafiltration application” Ceramics International 46(8) Part B :12480-12488
    [18] Leonard Tijing, John Ryan Dizon, Idris Ibrahim, Arman Ray Nisay, Ho Kyong Shon, Rigoberto Advincula, (2020) “3D printing for membrane separation, desalination and water treatment” Applied Materials Today 18:100486
    [19] Luyang Wei, Jinjin Zhang, Fangyong Yu, Weimin Zhang, Xiuxia Meng, Naitao Yang, Shaomin Liu, (2019) “A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique” International Journal of Hydrogen Energy 44(12):6182-6191
    [20] Jinjin Zhang, Luyang Wei, Xiuxia Meng, Fangyong Yu, Naitao Yang, Shaomin Liu, (2020) “Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia” Ceramics International 46(7):8745-8753
    [21] Bohang Xing, Yongxia Yao, Xiang Meng, Weiming Zhao, Minhao Shen, Shuyue Gao, Zhe Zhao, (2020) “Self-supported yttria-stabilized zirconia ripple-shaped electrolyte for solid oxide fuel cells application by digital light processing three-dimension printing” Scripta Materialia 181:62-65
    [22] Takayuki Fukasawa, Zhen-Yan Deng, Motohide Ando, Tatsuki Ohji, Shuzo Kanzaki, (2002) “Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process” Journal of the American Ceramic Society 85(9):2151-2155
    [23] Urs Gonzenbach, André Studart, Elena Tervoort, Ludwig Gauckler, (2006) “Stabilization of Foams with Inorganic Colloidal Particles” Langmuir 22:10983-10988
    [24] Jie Wei, Junfeng Jia, Fan Wu, Shicheng Wei, Huanjun Zhou, Hongbo Zhang, Jung-Woog Shin, Changsheng Liu, (2010) “Hierarchically microporous/macroporous scaffold of magnesium–calcium phosphate for bone tissue regeneration” Biomaterials 31(6):1260-1269
    [25] 鄭正元,江卓培,林宗翰,林榮信,蘇威年,汪家昌,蔡明忠,賴維祥,鄭逸琳,洪基彬,2017年,“3D列印積層製造技術與應用”全華圖書出版社。
    [26] Ian Gibson, David Rosen, Brent Stucker, (2010) “Additive Manufacturing Technologies” Vol. 238. New York: Spring
    [27] Takeshi Nakamoto, Katsumi Yamaguchi, (1996) “Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer” MHS'96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science p.53-58
    [28] Zhangwei Chen, Ziyong Li, Junjie Li, Chengbo Liu, Changshi Lao, Yuelong Fu, Changyong Liu, Yang Li, Pei Wang, Yi He, (2019) “3D printing ofceramics : A review” Journal of the European Ceramic Society 39 (4):661-687
    [29] Harris Marcus, Joseph Beaman, Joel Barlow, David Bourell, (1990) “Solid freeform fabrication-powder processing” American Ceramic Society Bulletin 69 (6):1030-1031
    [30] Emanuel Sachs, Michael Cima, James Cornie, (1990) “Three-dimensional printing: rapid tooling and prototypes directly from a CAD mode” CIRP Annals-Manufacturing Technology 39 (1):201-204
    [31] Ruth Felzmann, Simon Gruber, Gerald Mitteramskogler, Passakorn Tesavibul, Aldo Boccaccini, Robert Liska, Jürgen Stampfl, (2012) “Lithography‐Based Additive Manufacturing of Cellular Ceramic Structures” Advanced Engineering Materials 14(12):1052-1058
    [32] Robert Gmeiner, Gerald Mitteramskogler, Jürgen Stampfl, Aldo Boccaccini, (2015) “Stereolithographic ceramic manufacturing of high strength bioactive glass” International Applied Ceramic Technology 12(1):38-45
    [33] Martin Schwentenwein, Johannes Homa, (2015) “Additive Manufacturing of Dense Alumina Ceramics” Applied Ceramic Technology 12(1):1-7
    [34] Sonja Baumgartner, Robert Gmeiner, Julia Anna Schönherr, Jürgen Stampfl, (2020) “Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications” Materials Science and Engineering: C 116:111180
    [35] Lithoz GmbH. https://www.lithoz.com/en
    [36] Andrés Díaz Lantada, Adrián de Blas Romero, Martin Schwentenwein, Christopher Jellinek, Johannes Homa, (2016) “Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges” Smart Materials and Structures 25(5):054015
    [37] Uwe Scheithauer, Eric Schwarzer, Tassilo Moritz, Alexander Michaelis, (2018) “Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM)” Journal of Materials Engineering and Performance 27(1):4-20
    [38] Yoram de Hazan, Dirk Penner, (2017) “SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems” Journal of the European Ceramic Society 37(16): 5205-5212
    [39] Lim Chin Hwa, Srithar Rajoo, Alias Mohd Noor, Norhayati Ahmad, Uday Basheer Al-Naib, (2017) “Recent advances in 3D printing of porous ceramics: A review” Current Opinion in Solid State and Materials Science 21(6): 323-347
    [40] Clara Minas, Davide Carnelli, Elena Tervoort, André Studart, (2016) “3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics” Advanced Materials 28(45): 9993-9999
    [41] Joseph Muth, Patrick Dixon, Logan Woish, Lorna Gibson, Jennifer Lewis, (2017) “Architected cellular ceramics with tailored stiffness via direct foam writing” Proceedings of the National Academy of Sciences 114(8):1832-1837
    [42] Jung-Bin Lee, Woo-Youl Maeng, Young-Hag Koh, Hyoun-Ee Kim, (2019) “Novel additive manufacturing of photocurable ceramic slurry containing freezing vehicle as porogen for hierarchical porous structure” Ceramics International 45(17) Pat A:21321-21327
    [43] Xiaoyan Zhang, Wenlong Huo, Jingjing Liu, Youfei Zhang, Shuhao Zhang, Jinlong Yang, (2019) “3D printing boehmite gel foams into lightweight porous ceramics with hierarchical pore structure” Journal of the European Ceramic Society 40(3):930-934
    [44] Jhe-Wei Jhuang, Kan-Rong Lee, Jeng-kuei Chang, Chin-Tien Shen, Yi-Hsuan Lee, Sheng-Wei Lee, Chung-Jen Tseng, (2017) “Chemical stability and electrical and mechanical properties of BaZrxCe0.8-xY0.2O3 with CeO2 protection method” International Journal of Hydrogen Energy 42(34):22259-22265
    [45] Kan-Rong Lee, Chung-Jen Tseng, Shian-Ching Jang, Jing-Chie Lin, Kuan-Wen Wang, Jeng-Kuei Chang, Ting-Chia Chen, Sheng-Wei Lee, (2019) “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid” International Journal of Hydrogen Energy 44(42):23784-23792
    [46] 化源網。 https://www.chemsrc.com/
    [47] Keqiang Zhang, Chen Xie, Gang Wang, Rujie He, Guojiao Ding, Min Wang, Dawei Dai, Daining Fang, (2019) “High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing” Ceramics International 45(1): 203-208
    [48] Kan-Rong Lee, Chung-Jen Tseng, Shian-Ching Jang, Jing-Chie Lin, Kuan-Wen Wang, Jeng-Kuei Chang, Ting-Chia Chen, Sheng-Wei Lee, (2019) “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid” International Journal of Hydrogen Energy 44(42): 23784-23792
    [49] T. Krishnaveni, Krishnasamy Lakshmi, K. Kadirvelu, M. Kaveri, (2020) “Exploration of Catalytic Activity of Quercetin Mediated Hydrothermally Synthesized NiO Nanoparticles Towards C–N Coupling of Nitrogen Heterocycles” Catalysis Letters 150:1628-1640

    無法下載圖示 全文公開日期 2025/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE