簡易檢索 / 詳目顯示

研究生: 王鈺翔
Yu-Siang Wang
論文名稱: 具部分式光柵之高速直調雷射的製作與特性分析
Fabrication and Performance Analyses of High Speed Partial Grating Direct Modulation Lasers
指導教授: 李三良
San-liang Lee
口試委員: 葉秉慧
Ping-hui Yeh
任大為
Da-wei Ren
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 90
中文關鍵詞: 分佈反饋式雷射直調雷射部分光柵
外文關鍵詞: distributed feedback laser, directly modulated laser, partial grating
相關次數: 點閱:217下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文設計及製作具均勻光柵及部分光柵之分佈反饋式高速直調雷射,以AlInGaAs作為主動層材料,比較不同雷射腔長之均勻及部份光柵的特性,當雷射元件之主動層體積較小時,應有較大之鬆弛震盪頻率,然而受限於劈裂之精確度,要得到腔長小於200 μm之雷射成本過高,故本研究期望藉由部分光柵之有效鏡面縮短整體有效長度,以提高鬆弛震盪頻率而提高操作頻寬。
從同樣是均勻光柵,不同雷射腔長的量測結果中,確認腔長愈短則具有愈高的鬆弛震盪頻率,其最大值可達14.062 GHz,換算成相對應之調變頻寬則約為21.8 GHz,並且在單位施加電流下,具有最短腔長的200 μm雷射擁有最佳的鬆弛震盪頻率增加量,同時證實鬆弛震盪頻率與開根號的主動層體積具有接近反比的關係。
對於同樣雷射腔長為200 μm之均勻及部分光柵的比較,在頻寬的表現上證實部分光柵無法有效增加鬆弛震盪頻率,且具有較低之輸出光功率及較差之旁模抑制比,本論文之部分光柵雷射因在無光柵區不具蝕刻停止層,造成較大之電阻及易在高電流時因熱效應而影響元件特性。


To realize the light sources to fulfill the demand of high speed data transmission including short reach optical connects, this thesis fabricated and analyzed distributed feedback direct modulation lasers (DMLs) with uniform grating and partial grating. The material of AlInGaAs used as the active layer because this material has the merits of larger differential gain and temperature robustness for high-speed and uncool operation.
When the lasers have a small volume of active layer, there should be a large relaxation oscillation frequency. However, due to the accuracy of the cleavage, the cost of the cavity length less than 200 μm is too high. This study expects to shorten the overall effective length by using an effective mirror of the partial grating to increase the relaxation oscillation frequency.
For different cavity length of DMLs with uniform grating, we proved that the shorter cavity length accompanied by the higher relaxation oscillation frequency. We can obtain the modulation bandwidth, which is about 21.8 GHz when the cavity length equal to 200 μm.
We measure the laser characteristics for different partial grating lengths. The results indicate that DMLs with partial grating cannot increase the relaxation oscillation frequency obviously. Because the lack of etching stop layer on the top of no grating section, the larger series resistance cause the more severe thermal effect of partial grating DMLs at high bias current.

摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 研究動機 1 1-2 材料系統及調變方式 2 1-3 具部分光柵之分佈反饋式雷射簡介 3 1-4 研究方向 4 1-5 論文架構 5 第二章 雷射基本理論 6 2-1 半導體雷射 6 2-2 分佈反饋式雷射 26 2-3 靜態特性 29 2-4 動態特性 31 第三章 光罩設計與製程流程 36 3-1 光罩設計 37 3-2 製程流程 38 第四章 元件量測與討論 47 4-1 量測架構 47 4-1-1 光功率量測 47 4-1-2 光頻譜量測 48 4-1-3 相對強度雜訊量測 49 4-2 均勻光柵之量測結果與討論 50 4-2-1 L-I-V量測結果 50 4-2-2 頻譜量測結果 52 4-2-3 相對強度雜訊量測結果 57 4-3 腔長200 μm之均勻及部分光柵之量測結果與討論 62 4-3-1 L-I-V量測結果 62 4-3-2 頻譜量測結果 67 4-3-3 相對強度雜訊量測結果 69 第五章 結論 77 5-1 成果與討論 77 5-2 未來研究方向 78 參考文獻 79

[1]P. H. Lei, “1.3 μm AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well index-coupled distribution feedback laser diodes,” Solid-state electronics 51.6 (2007): 925-930.
[2]T. R. Chen, B. Chang, L. C. Chiu, K. L. Yu, S. Margalit, A. Yariv. “Carrier leakage and temperature dependence of InGaAsP lasers,” Applied Physics Letters 43.3 (1983): 217-218.
[3]N. K. Dutta, R. J. Nelson, “Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination,” Applied Physics Letters 38.6 (1981): 407-409.
[4]T. Ishikawa, T. Higashi, T. Uchida, T. Fujii, T. Yamannoto, H. Shoji, and M. Kobayashi, Proc. Indium Phosphide and related Materials, vol. ThP-55, pp. 729-732, May. 1998.
[5]K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50 Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photonics Technol. Lett. 27, 534–536 (2015).
[6]Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, J. Xu, C. Cole, and C. Roxlo, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB Laser,” J. Lightwave Technol. 34(11), 2677–2683 (2016).
[7]U. Troppenz, J. Kreissl, M. Möhrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40 Gbit/s directly modulated lasers: Physics and application,” Proc. SPIE, vol. 7953, pp. 1–10, 2011.
[8]W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908, 2013.
[9]O. Tetsuro, H. Yidong, S. Kenji, and M. Yoshiharu, “Simulation and grating design of DFB-LDs for metropolitan area and access networks and their characteristics,” Proceedings of SPIE., vol. 4111, pp. 1-8, SPIE, San Diego, CA, Dec. 2000.
[10]S. Stańczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyński,, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Applied Physics Letters 103.26 (2013): 261107.
[11]L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, John Wiley and Sons, NY, 1995.
[12]S.O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall, Ch4., 2001.
[13]J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, “The Design and Assessment of λ/4 Phase-Shifted DFB Laser Structures,” IEEE Journal of Quantum Electronics, Vol. 25, No. 6, pp. 1261-1279, JINE. 1989.
[14]S. L. Lee, C. J. Wang, P. L. Jiang, I. F. Jang, H. W. Chang, C. L. Yao, C. C. Lin and W. J. Ho, “Two-Section Bragg-Wavelength-Detuned DFB Lasers and Their Applications for Wavelength Conversion,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, pp. 1153-1161, Sep. 2005.
[15]T. Okuda, H. Yamada, T. Torikai, T. Uji, “Novel partially corrugated waveguide laser diode with low modulation distortion characteristics for subcarrier multiplexing,” Electronics Letters 30 (1994): 862-863.
[16]P. P. Devi, S.L. Lee, and G. Keiser, “Electroabsorption modulated lasers with high immunity to residual facet reflection by using lasers with partially corrugated gratings,” IEEE Photonics Journal, vol. 9, no. 2, pp. 1-16, Mar. 2017.
[17]黃正鈞,”設計及製作不同光柵的分佈反饋式半導體雷射及其與電致吸收調變器之積體化”,碩士論文,國立台灣科技大學,民國105年7月。
[18]T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s Direct Modulation Ridge Waveguide MQW-DFB Laser up to 85℃,” IEEE Photonics Technology Letters, 21(16), 1154-1156, 2009.

QR CODE