簡易檢索 / 詳目顯示

研究生: 習顯恬
Siti Sulikhah
論文名稱: 基於部分分佈反饋雷射且應用於 400-Gb/s 及以上速率光互連的先進高速光源 設計
Design of Advanced High-Speed Light Sources for 400-Gb/s and Above Optical Interconnects Based on Partially Corrugated Gratings DFB Lasers
指導教授: 李三良
San Liang Lee
口試委員: 曹恆偉
Hen-Wai Tsao
小口喜美夫
Kimio Oguchi
盧廷昌
Tien-Chang Lu
洪勇智
Yung-Jr Hung
詹裕恒
Yu-Heng Jan
鄭木海
Wood-Hi Cheng
葉秉慧
Pinghui Sophia Yeh
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 162
中文關鍵詞: 直接调制激光器电吸收调制器部分光栅无源反馈激光器剩余刻面反射光互连
外文關鍵詞: Directly modulated laser, Electro-absorption modulator, Partial grating, Passive feedback laser, Residual facet reflection, Optical interconnect
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 采用部分波纹光栅 (PCG) 的高级高速 MQW 激光器
    已成功开发400-Gb/s及以上的DFB结构
    互连。具有 PCG 和无源反馈 (PCG-PFL) 的 DFB 激光器
    在这里提出来克服以前计划的挑战性问题
    具有超短腔的 DFB 激光器或具有无源的集成 DFB 激光器
    波导反射器,其受制于较差的散热器和激光解理产率,
    由于面反射和外部光反馈导致性能下降。
    采用PCG结构,DFB激光器可以保持高单模产率(SMY)
    即使在背面有高反射涂层和强烈的反射
    集成无源部分。这提供了应用的稳健性
    集成无源反射器以重塑调制响应或增强
    通过使用光子-光子共振 (PPR) 效应获得 3-dB 带宽。经过
    将 PCG-PFL 设计为具有 150-µm 长的激光部分,50-µm 长的无源
    截面,以及 30% 的正面反射率,它可以有大约 86% 的 SMY,减少
    强度调制响应中的共振峰,以及减少的波形
    传输 56-Gbaud/s PAM-4 信号的过冲和下冲。通过使用
    更长的无源反射器,增强的带宽 (>60-GHz) 可以通过以下方式实现
    PPR 效应。
    在这项工作中,我们还通过模拟验证了增强的免疫力
    电吸收调制激光器 (EML) 的残余小面反射 (RFR)
    在激光部分加入 PCG。用于超高数据速率调制的 EML
    受 RFR 的影响,导致输出波形失真,特别是对于多级调制。原件的模式选择和设备性能
    众所周知,EML 对刻面相位、光学反馈、
    和/或面反射。与 PCG-DFB 结构一起,EML 可以保持
    即使具有很强的调制器反射,也具有高 SMY 和出色的品质因数
    从 EAM 部分。这提供了将 PCG-DFB 应用于
    拉平强度调制响应或改善下的输出波形
    大信号调制。通过将 PCG-EML 设计为具有 300 µm 长的激光
    部分,175 微米长的光栅部分,100 微米长的调制器部分,以及 ≤10-3
    正面反射率,激光可产生约97.3%的SMY,提高
    平均 Q 值,降低调制响应中的低频降 (LFD),
    增强的眼图张开度和减少的波形下冲/过冲
    传输 56-Gbaud/s 或更高的 PAM-4 信号。通过选择最优
    PCG-DFB 的光栅长度和应用非对称 QWS-DFB,
    EML 可以在广泛的范围内保持良好的静态和动态性能
    线性增益系数。


    Advanced high-speed MQW lasers by partially corrugated gratings (PCG)
    DFB structure have been successfully developed for 400-Gb/s and above
    interconnections. The DFB lasers with PCG and passive feedback (PCG-PFL)
    are proposed here to overcome the challenging issues for the former schemes of
    DFB lasers with ultrashort cavities or integrated DFB lasers with passive
    waveguide reflectors, which suffers from poor heatsink and laser cleavage yield,
    performance degradation due to the facet reflection and external optical feedback.
    With PCG structure, the DFB lasers can maintain high single-mode yield (SMY)
    even with a high-reflection-coating on the rear facet and strong reflection from
    the integrated passive section. This provides the robustness in applying the
    integrated passive reflector to reshape the modulation response or to enhance the
    3-dB bandwidth by using the photon-photon resonance (PPR) effect. By
    designing the PCG-PFL to have 150-µm long laser section, 50-µm long passive
    section, and 30% front-facet reflectivity, it can have about 86% of SMY, reduced
    resonant peak in the intensity modulation response, and reduced waveform
    overshoot and undershoot for transmitting 56-Gbaud/s PAM-4 signals. By using
    a longer passive reflector, enhanced bandwidth (>60-GHz) can be achieved by
    the PPR effect.
    In this work, we also verified by simulation the enhanced immunity to
    residual facet reflection (RFR) for electroabsorption modulated lasers (EMLs) by
    incorporating PCG in the laser section. EMLs for ultra-high data rate modulation
    is subject to the RFR that causes output waveform distortion, especially for multi-level modulation. The mode selection and device performance of an original
    EML is well known to be very sensitive to the facet phases, optical feedback,
    and/or facet reflections. Along with PCG-DFB structure, the EMLs can maintain
    high SMY and an excellent quality factor even with a strong modulator reflection
    from EAM section. This provides the robustness in applying the PCG-DFB to
    flatten intensity modulation response or to improve the output waveform under
    large signal modulation. By scheming PCG-EML to have 300-µm long laser
    section, 175-µm long grating section, 100-µm long modulator section, and ≤10-3
    front-facet reflectivity, the laser can produce about 97.3% SMY, improved
    average Q-value, reduced low frequency drop (LFD) in the modulation response,
    enhanced eye-opening, and reduced waveform undershoot/overshoot for
    transmitting 56-Gbaud/s or beyond PAM-4 signals. By choosing the optimal
    grating length for the PCG-DFB and applying an asymmetric QWS-DFB, the
    EMLs can maintain good static- and dynamic performances over a wide range of
    the linear gain coefficients.

    ABSTRACT i ACKNOWLEDGMENTS iii GLOSARY OF TERMS vi LIST OF FIGURES x LIST OF TABLES xvi CHAPTER 1-INTRODUCTION 1 1.1 Overview of Advanced High-Speed MQW Laser Technologies 5 1.1.1 Introduction of Passive Feedback Laser 5 1.1.2 Introduction of Electro-absorption Modulated Laser 8 1.2 Device Operation of Advanced High-Speed MQW Laser 10 1.2.1 Operation Principle of PFL 10 1.2.2 Operation Principle of EML 11 1.3 Motivation for the Work 16 1.4 Organization of the Dissertation 19 CHAPTER 2-LITERATURE REVIEW 20 2.1 State of Art of High-Speed MQW Laser Technologies 20 2.1.1 Static Characteristics 20 2.1.2 Dynamic Intensity Modulation Response 23 2.2 Analysis of High-Speed MQW Lasers 25 2.2.1 Overview of Different DFB Laser Structures 25 2.2.2 The Proposed Device Structures 29 CHAPTER 3-THEORETICAL MODELING OF OPTICAL FEEDBACK EFFECT 34 3.1 PCG-DFB and External Optical Feedback Model 34 3.2 PCG-PFL Dynamics Under External Optical Feedback 36 3.3 PCG-EML Under Residual Facet Reflection 38 CHAPTER 4-THE APPROACH AND DEVICE MODELING WITH TLLM TECHNIQUE 40 4.1 Overview of Photonics Transmission Line Laser Model (TLLM) 40 4.2 The Implementation Details of Photonics TLLM 43 4.3 Simulation Setup to Measure Laser Performances 56 CHAPTER 5- RESULTS AND DISCUSSION 66 5.1 Performance Analyses of High-Speed PCG-PFL 66 5.1.1 Comparisons Between UG-PFL and PCG-PFL 68 5.1.2 Improvement on RIN and IM Response by PCG-PFL 75 5.1.3 Effects on Modulation Waveforms 78 5.1.4 PPR Effect by PCG-PFL with ??= 200-µm 82 5.2 Performance Analyses of High-Speed PCG-EML 85 5.2.1 Experimental Results and Validation of Static Tests 88 5.2.2 Experimental Results and Validation of Dynamic Tests 95 5.2.3 Dynamic Performance of EMLs under 56-Gb/s Signals 99 5.2.4 Performance Comparison Between UG- and PCG-EMLs under 56-Gbaud/s PAM-4 Signal 103 5.2.5 112-Gbaud/s PAM-4 Transmission by PCG-EML with Grating Length of 175-µm 107 5.2.6 Performance Analyses of Asymmetric QWS-EML 109 CHAPTER 6-CONCLUSION AND FUTURE WORK 116 6.1 Conclusion 116 6.2 Future Work 120 REFERENCES 122 APPENDIX 138 BIOGRAPHY 139 PUBLICATIONS 140

    [1] C. Urricariet, "Trends in 400G optics for the data center," in Proc. NANOG
    Conf., San Francisco, CA, USA, 2019, pp. 1-22.
    [2] F. Zhu, Y. Wen, and Y. Bai, "Component BW requirement of 56Gbaud
    modulations for 400GbE 2 & 10 km PMD," in Proc. IEEE 802.3bs 400GbE
    Task Force Plenary Meeting, San Diego, CA, USA, 2014, pp. 1-13.
    [3] J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400
    Gigabit Ethernet using advanced modulation formats: Performance,
    complexity, and power dissipation”, IEEE Comm. Magazine, vol. 53, no. 2,
    pp. 182-189, Feb. 2015.
    [4] D. Sadot, G. Dorman, A. Gorshtein, E. Sonkin, and O. Vidal, “Single channel
    112Gbit/sec Pam4 at 56Gbaud with digital signal processing for data centers
    applications”, Proc. OFC, Los Angeles, CA, USA, 2015, Art. no. Th2A.67.
    [5] J. Wei, S. Calabro, T. Rahman, and N. Stojanovic, “System aspects of the
    next-generation data-center networks based on 200G per lambda IMDD
    links”, Proc. SPIE OPTO, San Francisco, CA, USA, 2020, Art. no. 1130805.
    [6] K. Naoe, T. Nakajima, Y. Nakai, Y. Yamaguchi, Y. Sakuma, and N. Sasada,
    “Advanced InP laser technologies for 400G and beyond hyperscale
    interconnections,” in Proc. SPIE Photon. Europe Conf., 2020, Art. no.
    1135604.
    [7] S. Yamauchi, K. Adachi, H. Asakura, H. Takita, Y. Nakai, Y. Yamaguchi, M.
    Mitaki, R. Nakajima, S. Tanaka, and K. Naoe, “224-Gb/s PAM4 uncooled
    operation of lumped-electrode EA-DFB lasers with 2-km transmission for
    800GbE application,” in Proc. OFC, 2021, Art. no. Tu1D.1.
    [8] N. Sasada, T. Nakajima, Y. Sekino, A. Nakanishi, M. Mukaikubo, M. Ebisu,
    M. Mitaki, S. Hayakawa, and K. Naoe, “Wide-temperature-range (25–80 °C)
    53-Gbaud PAM4 (106 Gb/s) operation of 1.3-μm directly modulated DFB
    lasers for 10-km transmission,” J. Lightw. Technol., vol. 37, no. 7, pp. 1686–
    1689, Apr. 2019.
    [9] A. Laakso and M. Dumitrescu, “Modified rate equation model including the
    photon-photon resonance,” in Proc.NUSOD, Atlanta, Georgia, USA, 2010,
    Art. no. ThB3.
    [10] O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J.
    R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U.
    Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally
    modulated laser for optical interconnects,” J. Lightw. Technol., vol. 35, no.
    6, pp. 1174-1179, Jan. 2017.
    [11] Y. Cheng, Q. J. Wang, and J. Pan, “1.55 μm high speed low chirp
    electroabsortion modulated laser arrays based on SAG scheme,” Opt. Exp.,
    vol. 22, no. 25, pp. 31286-31292, 2014.
    [12] Y. Huang, T. Okuda, K. Shiba, and T. Torikai, “High-yield external optical
    feedback resistant partially-corrugated-waveguide laser diodes,” in Proc.
    IEEE 16th Int. Semicond. Laser Conf., Nara, Japan, 1998, Art. no. TuE44.
    [13] M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, and K. Yoshiara,
    “Highly external optical feedback tolerant 1.49 μm single-mode lasers with
    partially corrugated gratings,” in Proc. IEEE 21st Int. Semicond. Laser Conf.,
    Sorrento, Italy, 2008, Art. no. MB8.
    [14] K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P.
    T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for
    100 Gb/s short reach optical transmission systems,” Opt. Exp., vol. 23, no.
    2, pp. 1176–1189, 2015.
    [15] Y. Huang, T. Okuda, K. Shiba, Y. Muroya, N. Suzuki, and K. Kobayashi,
    “External optical feedback resistant 2,5-Gb/s transmission of partially
    corrugated waveguide laser diodes over a −40 °C to 80 °C temperature
    range,” IEEE Photon. Technol. Lett., vol. 11, no. 11, pp. 1482–1484, 1999.
    [16] P. D. Pukhrambam, S. L. Lee, and G. Keiser, “Electroabsorption modulated
    lasers with immunity to residual facet reflection by using lasers with partially
    corrugated gratings,” IEEE Photon. J., vol. 9, no. 2, Apr. 2017, Art. no.
    7101016.
    [17] N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu,
    W. Li, and M. Li, , “Directly modulated semiconductor lasers,” IEEE J. Sel.
    Topics Quantum Electron., vol. 24, no. 1, pp. 1–19, Jan./Feb. 2017.
    [18] E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. C. Hasnain, and M. C. Wu,
    “Strong optical injection-locked semiconductor lasers demonstrating >100-
    GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Exp.,
    vol. 16, no. 9, pp. 6609–6618, 2008.
    [19] O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L.
    Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP
    DBR lasers at 1.55 μm wavelength,” Electron. Lett., vol. 33, no. 6, pp. 486–
    489, Mar. 1997.
    [20] Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D.
    Adams, T. Sudo, and C. Roxlo, “55 GHz bandwidth distributed reflector
    laser,” J. Lightw. Technol., vol. 35, no. 3, pp. 397–403, Feb. 2017.
    [21] G. Liu, G. Zhao, J. Sun, D. Gao, Q. Lu, and W. Guo, “Experimental
    demonstration of DFB lasers with active distributed reflector,” Opt. Exp.,
    vol. 26, no. 23, pp. 29784–29795, 2018.
    [22] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, A. Uetake, M. Ekawa, and
    T. Yamomoto, “AlGaInAs quantum-well lasers with semi-insulating buriedheterostructure for high-speed direct modulation up to 40 Gbps,” in Proc.
    SPIE-OSA-IEEE Asia Comm. Photon., Shanghai, China, 2009, Art. no.
    76311Q.
    [23] J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell,
    “Up to 40 Gb/s directly modulated laser operating at low driving current:
    Buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon.
    Technol. Lett., vol. 24, no. 5, pp. 362–364, Mar. 2012
    [24] M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J.
    Kreissl, and W. Rehbein, “Improving the modulation bandwidth in
    semiconductor lasers by passive feedback,” IEEE J. Sel. Topics Quantum
    Electron., vol. 13, no. 1, pp. 136–142, Jan./Feb. 2007.
    [25] O. V. Ushakov, S. Bauer, O. Brox, H. J. J. Wunsche, and F. Henneberger,
    “Dynamics of lasers with ultrashort optical feedback,” in Proc. Integrate.
    Optolectron. Dev., 2004, Art. no. 5349.
    [26] G. Morthier, A. Abbasi, J. Verbist, S. Keyvaninia, X. Yin, F. Lelarge, G. H.
    Duan, J. Bauwelinck, and G. Roelkens, “High-speed directly modulated
    heterogeneously integrated Inp/Si DFB laser,” in Proc. ECOC, Düsseldorf,
    Germany, 2016, Art. no. M.2.E.1.
    [27] J. Li, J. Zheng, T. Pu, Y. Zhang, Y. Shi, X. Zhang, Y. Li, X. Meng, and X.
    Chen, “Monolithically integrated multi-section semiconductor lasers:
    Towards the future of integrated microwave photonics,” Inter. J. Light Elect.
    Optic., vol. 226, no. 165724, pp. 1–29, 2020.
    [28] N. P. Diamantopoulos, H. Yamazaki, S. Yamaoka, M. Nagatani, H. Nishi, H.
    Tanobe, R. Nakao, T. Fujii, K. Takeda, T. Kakitsuka, H. Wakita, M. Ida, H.
    Nosaka, F. Koyama, Y. Miyamoto, and S. Matsuo, “>100-GHz bandwidth
    directly-modulated lasers and adaptive entropy loading for energy-efficient
    >300-Gbps/λ IM/DD systems,” J. Lightw. Technol., vol. 39, no. 3, pp. 771–
    778, Feb. 2021.
    [29] T. Nakajima, M. Onga, Y. Sekino, A. Nakanishi, N. Sasada, S. Hayakawa, S.
    Hamada, and K. Naoe, “106-Gb/s PAM4 operation of directly modulated
    DFB lasers from 25 to 70ºC for transmission over 2-km in the CWDM
    range,” in Proc. OFC, 2021, Art. no. Tu1D.4.
    [30] S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov,
    A. Nadtochiy, V. Shchukin, and D. Bimberg, “Oxide-confined 850 nm
    VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett., vol. 45, no.
    10, pp. 501–503, May 2009.
    [31] L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H.
    L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser
    modules for analog applications,” IEEE Photon. Technol. Lett., vol. 24, no.
    5, pp. 407–409, Dec. 2012.
    [32] T. Fukamachi, A. Nakamura, Y. Sakuma, S. Hayakawa, R. Washino, M.
    Mukaikubo, K. Okamoto, T. Nakajima, K. Motoda, K. Naoe, K. Nakahara,
    Y. Wakayama, and K. Uomi, “Uncooled clear-eye-opening- operation (25 to
    95°C) of 25.8/28-Gbps 1.3-μm directly modulated DFB lasers,” in Proc.
    Optic. Fiber Comm. Conf., San Francisco, CA, USA, 2014, Art. no. Th3A.7.
    [33] K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y.
    Sakuma, and S. Tanaka, “Direct modulation at 56 and 50 Gb/s of 1.3- μm
    InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett., vol.
    27, no. 5, pp. 534-536, Mar. 2015.
    [34] Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, J. Xu, C. Cole, and C.
    Roxlo, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using
    1310-nm Al-BH DFB laser,” J. Lightw. Technol., vol. 34, no. 11, pp. 2677-
    2683, Jun. 2016.
    [35] P. P. Baveja, M. Li, D. Wang, Y. Y. Liang, Y. Chen, D. M. Dorsey, H. Zhang,
    and J. Zheng, “Impact of laser dynamics on 56 Gbps PAM-4 modulation of
    25G class, 1310 nm, directly modulated lasers,” in Proc. IEEE Photon.
    Conf., Orlando, Florida, 2017, pp. 475-476.
    [36] S. Sulikhah, S. L. Lee, and H. W. Tsao, “Improvement on direct modulation
    responses and stability by partially corrugated gratings based DFB lasers
    with passive feedback,” IEEE Photon. J., vol. 13, no. 1, Feb. 2021, Art. no.
    4900214.
    [37] T. Fujisawa, T. Itoh, S. Kanazawa, K. Takahata, Y. Ueda, R. Iga, H. Sanjo, T.
    Yamanaka, M. Kotoku, and H. Ishii, “Ultracompact 160-Gbit/s transmitter
    optical subassembly based on 40-Gbit/s× 4 monolithically integrated light
    source,” Opt. Exp., vol. 21, no. 1, pp. 182–189, 2013.
    [38] M. Shirao, K. Kojima, and H. Itamoto, “53.2 Gb/s NRZ transmission over
    10 km using high speed EML for 400 GbE,” in Proc. Opto-Electron.
    Commun. Conf., Shanghai, China, 2015, Art. no. JThC.22.
    [39] W. Kobayashi, T. Yamanaka, M. Arai, N. Fujiwara, T. Fujisawa, K. Tsuzuki,
    T. Ito, Y. Kondo, and F. Kano, “40-Gbit/s, uncooled (-15 to 80°C) operation
    of a 1.55-μm, InGaAlAs, electroabsorption modulated laser for very short
    reach applications,” in Proc. IEEE Inter. Conf. Ind. Phosp. Rel. Mat.,
    Newport Beach, CA, USA, 2009, Art. no. ThB1.2.
    [40] Y. Nakai, A. Nakanishi, Y. Yamaguchi, S. Yamauchi, A. Nakamura, H.
    Asakura, H. Takita, S. Hayakawa, M. Mitaki, Y. Sakuma, and K. Naoe,
    “Uncooled operation of 53-GBd PAM4 (106-Gb/s) EA/DFB lasers with
    extremely low drive voltage with 0.9 Vpp,” J. Lightw. Technol., vol. 37, no.
    7, pp. 1658-1662, Apr. 2019.
    [41] C. Lam, X. Zhou, and H. Liu, “200G per lane for beyond 400GbE,” in Proc.
    IEEE 802.3 NEA Meeting, 2020, pp. 1-20.
    [42] O. K. Kwon, Y. S. Baek, and Y. C. Chung, “Electroabsorption modulated
    laser with high immunity to residual facet reflection,” IEEE J. Quantum
    Electron., vol. 48, no. 9, pp. 1203-1213, Sep. 2012.
    [43] N. Ohata, M. Shirao, Y. Kawamoto, T. Murao, M. Binkai, H. Sano, and K.
    Hasegawa, “High-speed optical devices and packaging techniques for data
    centers,” in Proc. SPIE OPTO, San Francisco, CA, USA, 2020, Art. no.
    1130807.
    [44] A. Abbasi, B. Moeneclaey, J. Verbist, X. Yin, J. Bauwelinck, G. H. Duan, G.
    Roelkens, and G. Morthier, “Direct and electroabsorption modulation of a
    III-V-on-Silicon DFB laser at 56 Gb/s,” IEEE J. Sel. Topics Quantum
    Electron., vol. 23, no. 6, Nov.-Dec. 2017, Art. no. 1501307.
    [45] Z. Ahmad, R. L. Chao, Y. J. Hung, J. Chen, C. C. Wei, and J. W. Shi, “Highspeed electro-absorption modulated laser at 1.3 µm wavelength based on
    selective area growth technique,” in Proc. IPC, San Antonio, TX, USA,
    2019, pp. 1-2.
    [46] M. S. B. Hossain, J. Wei, F. Pittala, N. Stojanovic, S. Calabro, T. Rahman,
    G. Bocherer, T. Wettlin, C. Xie, M. Kuschnerov, and S. Pachnicke, “402 Gb/s
    PAM-8 IM/DD O-band EML transmission,” in Proc. ECOC, Bordeaux,
    France, 2021, Art. no. We1C1.4.
    [47] M. Radziunas, U. Troppenz, and J. Kreissl, "Tailoring single-mode DFB
    laser with integrated passive feedback section for direct modulation
    applications," in Proc. CLEOE-IQEC, Munich, Germany, 2007, Art. no.
    9807037.
    [48] J. Ohtsubo, Semiconductor Lasers, 1st ed., Verlag, Berlin: Springer, 2017.
    [49] J. L. Beylat and J. Jacquet, “Analysis of DFB semiconductor lasers with
    external optical feedback,” Electron. Lett., vol. 24, no. 9, pp. 509–510, May
    1988.
    [50] M. F. Alam, M. A. Karim, and S. Islam, “Analysis of external optical
    feedback characteristics of asymmetric, quarter-wave-shifted, distributedfeedback semiconductor lasers,” App. Opt., vol. 36, no. 18, pp. 4131–4137,
    1997.
    [51] O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B.
    Sartorius, and H. J. Wunsche, “High-frequency pulsations in DFB lasers with
    amplified feedback,” IEEE J. Quantum Electron., vol. 39, no. 11, pp. 1381–
    1387, Nov. 2003.
    [52] Y. Xu and X. Wang, "Considerations on 200GE SMF wavelength choice for
    10km," in Proc. IEEE 802.3bs Task Force Meeting, Whistler, Canada, 2016,
    pp. 1-16.
    [53] B. K. Saravanan, Frequency chirping properties of electroabsorption
    modulators integrated with laser diodes, Doctoral dissertation, Universitat
    Ulm, 2006.
    [54] L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Laser and
    Photonics Integrated Circuits, 2nd ed., Hoboken, NJ, USA: Wiley, 2012.
    [55] K. J. Ebeling, Integrated Optoelectronics, Waveguide Optics, Photonics,
    Semiconductors, Verlag, Berlin: Springer, 1993.
    [56] G. Ghione, Semiconductor Devices for High-Speed Optoelectronics,
    Cambridge, UK: Cambridge University Press, 2009.
    [57] A. A. Amusan, Simulation of traveling wave electro-absorption modulators
    suitable for 100Gbps, Master thesis, KTH Information and Communication
    Technology, 2011.
    [58] J. J. S. Huang, Y. H. Jan, D. Yu, R. Chang, J. Chang, G. Shiu, D. Ren, K.
    Wang, and E. Chou, “Manufacturing excellence and future challenges of
    wireless laser componets for 4G/5G optical mobile fronthaul networks,” in
    Proc. WOCC, Hualien, Taiwan, 2018, pp. 166-167.
    [59] W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara,, T. Tadokoro, K. Tsuzuki,
    Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled
    electroabsorption modulator integrated DFB laser with butt-joint structure,”
    J. Lightw. Technol., vol. 28, no. 1, pp. 164-171, Jan. 2010.
    [60] H. G. Shiraz, Distributed Feedback Laser Diodes and Optical Tunable
    Filters, Southern Gate, Chichester, England: Wiley, 2003.
    [61] M. Aoki, S. Takashima, Y. Fujiwara, and S. Aoki, “New transmission
    simulation of EA-moudator integrated DFB-lasers considering the facet
    reflection-induced chirp,” IEEE Photon. Technol. Lett., vol. 9, no. 3, pp. 380-
    382, Mar. 1997.
    [62] C. Sun, B. Xiong, J. Wang, P. Cai, J. Xu, Q. Zhou, and Y. Luo, “Influence of
    residual facet reflection on the eye-diagram performance of high-speed
    electroabsorption modulated lasers,” J. Lightw. Technol., vol. 27, no. 15, pp.
    2970-2976, Aug. 2009.
    [63] S. Sulikhah, S. L. Lee, J. Chang, D. Ren, E. Chou, Y. H. Jan, and H. W. Tsao,
    "Demonstration of improved immunity to residual facet reflection for
    uncooled EMLs with partially corrugated grating," in Proc. Optoelect.
    Comm. Conf., Taipei, Taiwan, 2020, Art. no. T45.1.
    [64] P. D. Pukhrambam and S. L. Lee, “Highly residual facet reflection immune
    electro-absorption modulated laser with short partially corrugated gratings,”
    in Proc. ISLC, Kobe, Japan, 2016, Art. no. WE21.
    [65] Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou,
    Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a
    monolithic integrated two-section DFB laser utilizing side-mode injection
    locking method,” Opt. Exp., vol. 25, no. 22, pp. 27595-27608, 2017.
    [66] H. Bissessur, “Effects of hole burning, carrier-induced losses and the carrierdependent differential gain on the static characteristics of DFB lasers,” J.
    Lightw. Technol., vol. 10, no. 11, pp. 1617-1630, Nov. 1992.
    [67] P. J. Walraven, Design of grating structures to reduce longitudinal spatial
    hole burning in distributed feedback lasers, Master thesis, Eindhoven
    University of Technology, 1995.
    [68] M. Okai, “Spectral characteristics of distributed feedback semiconductor
    lasers and their improvements by corrugation-pitch-modulated structure,” J.
    App. Physics, vol. 75, no. 1, pp. 1-29, Jan. 1994.
    [69] P. Vankwikelberge, G. Morthier, and R. Baets, “CLADISS-a longitudinal
    multimode model for the analysis of the static, dynamic, and stochastic
    behavior of diode lasers with distributed feedback,” IEEE J. Quantum
    Electron., vol. 26, no. 10, pp. 1728-1741, Oct. 1990.
    [70] M. Peschke, P. Gerlach, B. K. Saravanan, and B. Stegmueller, “Thermal
    crosstalk in integrated laser-modulators,” IEEE Photon. Technol. Lett., vol.
    16, no. 11, pp. 2508-2510, Nov. 2004.
    [71] M. Nakamura, K. Aiki, J. Umeda, and A. Yariv, “CW operation of
    distributed-feedback GaAs-GaAlAs diode lasers at temperatures up to 300
    K,” App. Phys. Lett., vol. 27, pp. 403-405, 1975.
    [72] M. Geert and V. Patrick, Handbook of Distributed Feedback Laser Diodes,
    2nd ed., Norwood: Artech House Inc., 2013.
    [73] J. Zheng, N. Song, Y. Zhang, Y. Shi, S. Tang, L. Li, R. Guo, and X. Chen,
    “An equivalent-asymmetric coupling coefficient DFB laser with high output
    efficiency and stable single longitudinal mode operation,” IEEE Photon. J.,
    vol. 6, no. 6, Dec. 2014, Art. no. 1502809.
    [74] F. Favre, “Design of asymmetric quarter-wave-shifted DFB semiconductor
    lasers,” Electron. Lett., vol. 22, no. 21, pp. 1113-1114, Oct. 1986.
    [75] Y. Huang, H. Yamada, T. Okuda, T. Torikai, and T. Uji, “External optical
    feedback resistant characteristics in partially-corrugated-waveguide laser
    diodes,” in Proc. OFC, San Jose, CA, USA, 1996, Art. no. TuH1.
    [76] H. Yamada, K. Shiba, T. Okuda, Y. Huang, and T. Torikai, “External optical
    feedback resistant 622 Mbit/s modulation from -40ºC to +85ºC using
    partially corrugated laser diodes,” in Proc. OFC, Dallas, TX, USA, 1997,
    Art. no. ThR1.
    [77] Y. Huang, T. Okuda, K. Shiba, and T. Torikai, “Dynamic analysis on external
    optical feedback resistant characteristics in partially-corrugated-waveguide
    laser diodes,” in Proc. Photonics China, Beijing, China, 1998, pp. 16-23.
    [78] T. Okuda, Y. Huang, K. Sato, and Y. Muroya, “Simulation and grating design
    of DFB-LDs for metropolitan area and access networks and their
    characteristics,” in Proc. Inter. Sym. Optic. Science Technol., San Diego, CA,
    USA, 2000, pp. 24-31.
    [79] S. Sulikhah, H. W. Tsao, and S. L. Lee, "Enhancement of modulation
    responses of directly modulated lasers with passive feedback and partially
    corrugated grating," in Proc. 24th Microoptics Conf., Toyama, Japan, 2019,
    Art. no. G-3.
    [80] C. Bornholdt, U. Troppenz, J. Kreissl, W. Rehbein, B. Sartorius, M. Schell,
    and I. Woods, “40 Gbit/s directly modulated passive feedback DFB laser for
    transmission over 320 km single mode fibre,” in Proc. 34th ECOC, Brussels,
    Belgium, 2008, Art. no. Tu.1.D.6.
    [81] Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design
    scheme for high-speed MQW lasers with enhanced differential gain and
    reduced carrier transport effect,” IEEE J. Quantum Electron., vol. 34, no. 12,
    pp. 2340–2349, Dec. 1998.
    [82] J. J. S. Huang, Y. H. Jan, D. Ren, Y. C. Hsu, P. Sung, and E. Chou, “Defect
    diffusion model of InGaAs/InP semiconductor laser degradation,” App.
    Physics Research, vol. 8, no. 1, pp. 149-157, Jan. 2016.
    [83] J. J. S. Huang, Y. H. Jan, J. Chang, Y. C. Hsu, D. Ren, E. Chou, “Swift
    reliability test methodology of 100G high-speed, energy-efficient electroabsorption modulated lasers (EML) for green datacenter networks,”
    RedFame, vol. 3, no. 1, pp. 74-80, Aug. 2016.
    [84] J. J. S. Huang, Y. H. Jan, H. S. Chang, J. Chang, R. Chang, G. Liu, H. S.
    Chen, A. Chen, D. Ren, and E. Chou, “ESD polarity effect study of
    monolithic, integrated DFB-EAM EML for 100/400G optical networks,” in
    Proc. CLEO-PR, Singapore, 2017, Art. no. s1018.
    [85] F. Favre, “Theoretical analysis of external optical feedback on DFB
    semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp.
    81-88, Jan. 1987.
    [86] F. Favre, “Sensitivity to external feedback for gain-coupled DFB
    semiconductor lasers,” Electron. Lett., vol. 27, no. 5, pp. 433-435, Feb. 1991.
    [87] Y. Yoshikuni, H. Kawaguchi, and T. Ikegami, “Intensity fluctuation of 1.5
    µm InGaAsP/InP distributed feedback lasers involving the optical feedback
    effect,” IEE Proc. J, Optoelectron., vol. 132, no. 1, pp. 20-27, Feb. 1985.
    [88] J. L. Beylat and J. Jacquet, “Analysis of DFB semiconductor lasers with
    external optical feedback,” Electron. Lett., vol. 24, no. 9, pp. 509-510, Apr.
    1988.
    [89] N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes
    for a single-mode semiconductor laser with external feedback,” IEEE J.
    Quantum Electron., vol. 24, no. 7, pp. 1242-1247, Jul. 1988.
    [90] T. Kurosaki, T. Katayama, and H. Kawaguchi, “Numerical study of a highly
    optical-feedback tolerant DFB laser with an absorber and a rear reflector
    using transfer matrixes and rate equations,” IEICE Electron. Exp., vol. 14,
    no. 11, pp. 1-12, May 2017.
    [91] J. Zheng, J. Li, T. Pu, Y. Zhang, Y. Shi, X. Zhang, X. Meng, and X. Chen,
    “Monolithically integrated multi-section semiconductor lasers: towards the
    future of integrated microwave photonics,” in Proc. SPIE/COS Photonics
    Asia, 2020, Art. no. 1155504.
    [92] U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rehbein, B. Sartorius,
    I. Woods, and M. Schell, “40 Gbit/s directly modulated lasers: Physics and
    application,” in Proc. SPIE OPTO Conf., San Francisco, CA, USA, 2011,
    Art. no. 79530F.
    [93] C. Sun, B. Xiong, J. Wang, P. Cai, J. Xu, J. Huang, H. Yuan, Q. Zhou, and Y.
    Luo, “Fabrication and packaging of 40-Gb/s AlGaInAs multiple-quantumwell electroabsorption modulated lasers based on identical epitaxial layer
    scheme,” J. Lightw. Technol., vol. 26, no. 11, pp. 1464-1471, Jun. 2008.
    [94] P. Brosson and H. Bissessur, “Analytical expressions for the FM and AM
    responses of an integrated laser-modulator,” IEEE J. Sel. Topics Quantum
    Electron., vol. 2, no. 2, pp. 336-340, Jun. 1996.
    [95] I. P. Kaminow, G. Eisenstein, and L. W. Stulz, “Measurement of the modal
    reflectivity of an antireflection coating on a superluminescent diode,” IEEE
    J. Quantum Electron., vol. QE-19, no. 4, pp. 493-495, Apr. 1983.
    [96] VPIcomponentMaker 10.0 Photonic Circuit User’s Manual. Somerset, NJ,
    USA: VPIsystems Inc., 2019.
    [97] Y. Li, W. Zhou, Y. W. Chen, Y. Chen, Y. Huang, K. Li, J. Yu, and G. K. Chang,
    “Optical comb generator with flat-topped spectral response using one
    electroabsorption-modulated laser and one phase modulator,” Optical
    Engineering, vol. 59, no. 1, Jan. 2020, Art. no. 016112.
    [98] J. Declercq, H. Li, J. V. Kerrebrouck, M. Verplaetse, H. Ramon, L. Bogaert,
    J. Lambrecht, C. Y. Wu, L. Breyne, O. Caytan, S. Lemey, J. Bauwelinck, X.
    Yin, P. Ossieur, P. Demeester, and G. Torfs, “Low power all-digital radioover-fiber transmission for 28-GHz band using parallel electro-absorption
    modulators,” J. Lightw. Technol., vol. 39, no. 4, pp. 1125-1131, Oct. 2020.
    [99] Y. Bao, W. Lin, J. Fu, T. Gui, L. Yang, Z. Li, and B. O. Guan, “50Gbps DDOOFDM transmission after 80km without DCF based on an electro-absorption
    modulator,” in Proc. ICOCN, Guangzhou, China, 2011, Art. no. NU21.
    [100] I. Koltchanov, A. Richter, E. Myslivets, and C. Kazmierski, “Complete time
    and frequency-dependent modeling of electro-absorption modulators,” in
    Proc. OFC/NFOEC, Anaheim, CA, USA, 2005, Art. no. OME42.
    [101] A. Lowery, O. Lenzmann, I. Koltchanov, R. Moosburger, R. Freund, A.
    Richter, S. Georgi, D. Breuer, and H. Hamster, “Multiple signal
    representation simulation of photonic devices, systems, and networks,” IEEE
    J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 282–296, Mar./Apr. 2000.
    [102] G. Morthier and B. Moeyersoon, “Intensity noise and linewidth of laser
    diodes with integrated semiconductor optical amplifier,” IEEE Photon.
    Technol. Lett., vol. 14, no. 12, pp. 1644–1646, Dec. 2002.
    [103] W. Zhao, Y. Mao, D. Lu, Y. Huang, L. Zhao, Q. Kan, and W. Mang,
    “Modulation bandwidth enhancement of monolithically integrated mutually
    coupled distributed feedback laser,” App. Sci., vol. 10, no. 4375, pp. 1–13,
    2020.
    [104] A. J. Lowery, “New dynamic multimode model for external cavity
    semiconductor lasers,” IEE Proc. J. Optoelectron., vol. 136, no. 4, pp. 229–
    237, 1989.
    [105] L. Hairong and H. G. Shiraz, “Applications of the transmission line laser
    model in analysis of multiple-phase-shift DFB lasers,” Microw. Opt. Technol.
    Lett., vol. 40, no. 1, pp. 51–57, 2004.
    [106] P. D. Pukhrambam, Electro-absorption modulated lasers with high immunity
    to residual facet reflection by using lasers with partially corrugated gratings,
    Doctoral dissertation, National Taiwan University of Science and
    Technology, 2017.
    [107] Y. P. Xi, W. P. Huang, and X. Li, “High-order split-step schemes for timedependent coupled-wave equations,” IEEE J. Quantum Electron., vol. 43,
    no. 5, pp. 419-425, May 2007.
    [108] B. S. Kim, Y. Chung, and J. S. Lee, “An efficient split-step time-domain
    dynamic modeling of DFB/DBR laser diodes,” IEEE J. Quantum Electron.,
    vol. 36, no. 7, pp. 787-794, Jul. 2000.
    [109] W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Wellbarrier hole burning in quantum well lasers,” IEEE Photon. Tech. Lett., vol.
    3, no. 9, pp. 784-786, 1991.
    [110] R. Nagarajan, T. Fukushima, S. W. Corzine, and J. E. Bowers, “Effects of
    carrier transport on high-speed quantum well lasers,” App. Phys. Lett., vol.
    59, pp. 1835-1837, 1991.
    [111] K. Petermann, Laser Diode Modulation and Noise, Dordrecht: Kluwer
    Academic Publishers, 1988.
    [112] A. J. Lowery, “Amplified spontaneous emission in semiconductor laser
    amplifiers: the validity of the transmission-line laser model,” IEE Proc. J.
    Optoelectron., vol. 137, pp. 241-247, 1990.
    [113] C. H. Henty, “Theory of spontaneous emission noise in open resonators and
    its application to lasers and optical amplifiers,” J. Lightw. Technol., vol. 4,
    no. 3, pp. 288-297, Mar. 1986.
    [114] M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor
    lasers – an overview,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 9-29,
    Jan. 1987.
    [115] E. E. Fiky, M. Chagnon, M. Sowailem, A. Samani, M. M. Osman, and D. V.
    Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center
    optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314-
    317, Feb. 2017.
    [116] S. Mieda, N. Yokota, R. Isshiki, W. Kobayashi, and H. Yasaka, “Frequency
    response control of semiconductor laser using hybrid modulation scheme,”
    Opt. Exp., vol. 24, no. 22, pp. 25824–25831, 2016.
    [117] T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “Highspeed modulation lasers for 100GbE applications,” in Proc. Opt. Fiber
    Comm. Conf., LA, CA, USA, 2011, Art. no. OWD1.
    [118] Y. C. Lu, J. Chen, K. M. Feng, P. C. Yeh, T. Y. Huang, W. R. Peng, M. F.
    Huang, and C. C. Wei, “Improved SPM tolerance and cost-effective phase
    modulation duobinary transmission over 230 km standard single-mode fiber
    using a single Mach-Zender modulator,” IEEE Photon. Technol. Lett., vol.
    17, no. 12, pp. 2754–2756, Dec. 2005.
    [119] H. Venghaus and N. Grote, Fibre Optic Communication, 2nd ed., Berlin,
    Germany: Springer, 2017.
    [120] G. Katz and E. Sonkin, “Level optimization of PAM-4 transmission with
    signal-dependent noise,” IEEE Photon. J., vol. 11, no. 1, Feb. 2019, Art. no.
    7200606.
    [121] H. Virtanen, T. Uusitalo, and M. Dumitrescu, “Simulation studies of DFB
    laser longitudinal structures for narrow linewidth emission,” Optic. Quant.
    Electron., vol. 49, no. 160, pp. 1–13, 2017.
    [122] M. M. Bouchene and R. Hamdi, “The effect of facets reflectivity on the static
    characteristics of (DFB) semiconductor laser,” in Proc. CISTEM, Alger,
    Algerie, 2018, Art. no. 202.
    [123] Y. G. Zhao, X. Luo, D. Tran, Q. Hang, P. Weber, T. Hang, R. K. Graichen, N.
    Nuttall, R. Cendejas, A. Nikolov, and R. Dutt, “High-power and low-noise
    DFB semiconductor lasers for RF photonic links,” in Proc. IEEE Avi.,FiberOpt. Photon. Dig. CD, Cocoa Beach, FL, USA, 2012, Art. no. WD3.
    [124] G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed., Van Nostrand
    R., Ed., New York, NY, USA: Van Nostrand Reinhold, 1993.
    [125] M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “FP and DFB semiconductor
    lasers with arbitrary external optical feedback,” in Proc. SPIE OE/FIBERS,
    Boston, USA, 1989, pp. 33–44.
    [126] M. Dumitrescu, T. Uusitalo, H. Virtanen, A. Laakso, P. Bardella, and I.
    Montrosset, “Simulation of photon-photon resonance enhanced direct
    modulation bandwidth of DFB lasers,” in Proc. NUSOD, Sydney, Australia,
    2016, Art. no. TuP12.
    [127] T. Uusitalo, H. Virtanen, P. Bardella, and M. Dumitrescu, “Analysis of the
    photon-photon resonance influence on the direct modulation bandwidth of
    dual-longitudinal-mode distributed feedback lasers,” Optic. Quant.
    Electron., vol. 49, no. 46, pp. 1–4, 2017.
    [128] S. Kanazawa, T. Fujisawa, A. Ohki, H. Ishii, N. Nunoya, Y. Kawaguchi, N.
    Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “A compact EADFB
    laser array module for a future 100-Gb/s Ethernet transceiver,” IEEE J. Sel.
    Topics Quantum Electron., vol. 17, no. 5, pp. 1191-1197, Sep./Oct. 2011.
    [129] Y. T. Han, O. K. Kwon, D. H. Lee, C. W. Lee, Y. A. Leem, J. U. Shin, S. H.
    Park, and Y. Baek, “A cost-effective 25-Gb/s EML TOSA using all-in-one
    FPCB wiring and metal optical bench,” Opt. Exp., vol. 21, no. 22, pp. 26962-
    26971, Oct. 2013.
    [130] O. K. Kwon, Y. T. Han, Y. S. Baek, and Y. C. Chung, “Improvement of
    modulation bandwidth in electroabsorption-modulated laser by utilizing the
    resonance property in bonding wire,” Opt. Exp., vol. 20, no. 11, pp. 11806-
    11812, May 2012.
    [131] J. S. Choe, Y. H. Kwon, J. S. Sim, S. B. Kim, and M. H. Lee, “40 Gbps
    electroabsorption modulated DFB laser with tilted facet formed by dry
    etching,” in Proc. IEEE 19th ICIPRM, Matsue, Japan, 2007, Art. no. PB16.
    [132] W. D. Sacher, E. J. Zhang, B. A. Kruger, and J. K. S. Poon, “High-speed laser
    modulation beyond the relaxation resonance frequency limit,” Opt. Exp., vol.
    18, no. 7, pp. 7047-7054, Mar. 2010.
    [133] B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in
    semiconductor lasers under steady-state and transient conditions,” IEEE J.
    Quantum Electron., vol. 28, no. 6, pp. 1479-1486, Jun. 1992.
    [134] U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A.
    Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm electroabsorption modulated
    lasers for PAM4/PAM8 single channel 100 Gb/s,” in Proc. 26th IPRM,
    Montpellier, France, 2014, Art. no. Th-B2-5.
    [135] F. Chang, Datacenter Connectivity Technologies: Principles and Practice,
    Gistrup, Denmark: River Publishers, 2017.
    [136] B. H. Park I. Kim, B. K. Kang, Y. D. Bae, S. M. Lee, Y. H. Kim, D. H. Jang,
    and T. I. Kim, “Investigation of optical feedback in high speed
    electroabsorption modulated lasers with window region,” IEEE Photon.
    Technol. Lett., vol. 17, no. 4, pp. 777-779, Apr. 2005.

    無法下載圖示 全文公開日期 2026/09/08 (校內網路)
    全文公開日期 2026/09/08 (校外網路)
    全文公開日期 2026/09/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE