簡易檢索 / 詳目顯示

研究生: 黃鈺哲
Yu-Zhe Huang
論文名稱: 考量動態負載之適應性機器人關節馬達控制器開發
Development of Adaptive Robotic Joint Motor Controllers with Dynamic Load Interventions
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 黃漢邦
Han-Pang Huang
蘇順豐
Shun-Feng Su
鍾聖倫
Sheng-Luen Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 69
中文關鍵詞: 關節馬達控制器模糊邏輯控制適應性控制S曲線速度規劃
外文關鍵詞: joint motor controller
相關次數: 點閱:207下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來服務型機器人之產品需求日與遽增,而關節馬達為服務型機器人之重要關鍵零組件,其應用於機器手臂與足型結構。關節馬達之控制模式複雜,需動態調整控制策略,以適應不同肢體方位和外加負載之變化。有鑑於此,本論文提出一考量動態負載之適應性機器人關節控制器研究。本研究分為兩部分進行,第一部分以傳統PID位置控制方法進行關節馬達控制器之開發,實作上除了以dsPic實現控制器之外,亦以一具12自由度之雙足人形機器人進行步行測試,以驗證此一控制器之有效性。第二部分考量以S曲線進行關節馬達之速度規劃,以控制關節馬達於規劃速度時間內完成角度位移目標值。此外,為了適應不同馬達部位負載差異以及外加負載之變化,本研究以模糊理論針對速度誤差與速度誤差變化量為考量因子,進行動態比例增益以及微分增益之調整,以適應負載之變化。此一部分以Matlab Simulink建構馬達以及負載模型,並以不同負載干擾進行測試
,以驗證本文所提出之控制方法。實驗結果顯示動態比例增益之調整改善了傳統固定比例增益以及微分增益之速度響應,並大幅降低因突然外加負載之震盪幅度以及影響時間。


Demand of service robots is fast increasing in recent years. Joint motors are key components of service robots, and they are usually applied to manipulators and biped robots. Joint motor control systems are complicated, because they have to adjust their control gains according to the changes of unpredictable loads. Therefore, this study develops an adaptive robotic joint motor controller with dynamic load interventions. This thesis is organized as two parts. The first part realizes a dsPic based proportional–integral–derivative (PID) controller to deal with position servo controls of DC motors. At the same time, twelve PID controllers are connected via half-duplex serial communications to control a twelve degree-of-freedom (DOF) biped humanoid robot. Successful walking experiments demonstrated the effectiveness of the proposed PID joint motor controller. The second part is to control the joint motor based on the S-curve velocity planning approach so that the joint motor may achieve a desired angular position within a given time. In order to deal with load variations from different limb postures and external load interventions, a fuzzy logic based adaptive control gain generator is developed according to the factors of velocity errors and velocity error variations. Therefore, the proportional and derivative gains are capable of self-adjustments with respect to load changes. The fuzzy logic control system is modeled and evaluated using the Matlab Simulink. Finally, several load intervention conditions are examined based on the proposed controller. Simulation results demonstrated the proposed fuzzy controller reduces the amplitudes and time of oscillations with respect to load variations when compared to fixed control gain conditions.

指導教授推薦書 ii 口試委員會審定書 iii 誌謝 iv 摘要 v Abstract vi 目錄 vii 圖目錄 ix 表目錄 xii 第一章 序論 1 1-1 研究背景與動機 1 1-2 研究目的 1 1-3 研究架構 2 第二章 文獻回顧 4 2-1 動態負載分析 4 2-2 關節馬達之控制 6 2-3 阻抗控制 8 2-4 適應控制 11 2-5 自調式PID控制 15 第三章 PID關節馬達控制器 17 3-1 直流馬達數學模型與驗證 17 3-2 PID控制理論 23 3-3 關節馬達位置控制 26 3-3-1 PID位置控制器架構 26 3-3-2 控制器系統驗證 30 3-4 關節馬達速度控制 34 3-4-1 PID速度控制器架構 34 3-4-2 運動路徑規劃 36 第四章 適應性關節模糊控制器 41 4-1 關節之動態負載分析 41 4-2 模糊控制理論 43 4-2-1 糢糊集合 43 4-2-2 歸屬函數 44 4-2-3 糢糊推論 46 4-2-4 糢糊控制系統 47 4-3 模糊控制器設計 48 4-4 系統模擬與實驗討論 53 第五章 結論與未來研究規劃 62 參考文獻 63 作者簡介 68 授權書 69

[1] F. Aghili, “Impedance Control of Manipulators Carrying a Heavy Payload,” IROS 2009. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3410 - 3415, 2009.
[2] Y.Y. Chen, J. Zhao, J.M. Zhan and S.G. Zhu, “A High-Precision Fuzzy Impedance Control Algorithm and Application in Robotic Arm,” Proceedings of 2005 International Conference on Machine Learning and Cybernetics, pp. 905 - 910 Vol. 2, 2007.
[3] M.R. Emami and A. Martin,“Dynamic Load Emulation for Robotic Hardware-in-the-Loop Simulation Platforms,” ISIE 2008. IEEE International Symposium on Industrial Electronics, pp. 2207 - 2212, 2008.
[4] L. Gui, Z. Yang, X. Yang, W. Gu and Y. Zhang, “Design and Control Technique Research of Exoskeleton Suit,” 2007 IEEE International Conference on Automation and Logistics, pp. 541 - 546, 2007.
[5] H.P. Huang, M.L. Roan and J.C. Jeng, “On-Line Adaptive Tuning for PID Controllers,” IEE Proceedings Control Theory and Applications, Volume: 149 , Issue: 1, pp. 60 - 67, 2002.
[6] S.H. Hyon,“A Motor Control Strategy With Virtual Musculoskeletal Systems for Compliant Anthropomorphic Robots,” IEEE/ASME Transactions on Mechatronics, Volume: 14 , Issue: 6, pp. 677 - 688, 2009.
[7] H. Karimipour and H.T. Shandiz, “A New Adaptive Fuzzy Controller for DC Motor Position Control,” ICSCCW 2009. Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, pp. 1 - 4, 2009.
[8] H. Kazerooni,“Design and Analysis of Pneumatic Force Generators for Mobile Robotic Systems,” IEEE/ASME Transactions on Mechatronics, Volume: 10, Issue: 4, pp. 411 - 418, 2005.
[9] Y.S. Kung and M.H. Tsai, “FPGA-Based Speed Control IC for PMSM Drive with Adaptive Fuzzy Control,” IEEE Transactions on Power Electronics, Volume: 22, Issue: 6, pp. 2476 - 2486, 2007.
[10] C.H. Kuo, Y.Z. Huang, C.K. Hung, C.T. Chen and P.C. Chia, “Small Size Biped Humanoid Robot: A Study from Hands-on Implementations,” Proceedings of 2009 CACS International Automatic Control Conference, 2009.
[11] K.Y. Lee, S.Y. Lee, J.H. Choi, S.H. Lee and C.S. Han, “The Application of The Human-Robot Cooperative System for Construction Robot Manipulating and Installing Heavy Materials,” SICE-ICASE, 2006. International Joint Conference, pp. 4798 - 4802, 2007.
[12] L. Li and Y. Liu, “Fuzzy PID with Parameters Self-Turning Used in The Belt Position Departure Control,” 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (EDT), Volume: 1, pp. 349 - 352, 2010.
[13] Shihua Li and Zhigang Liu, “Adaptive Speed Control for Permanent-Magnet Synchronous Motor System with Variations of Load Inertia,” IEEE Transactions on Industrial Electronics, pp. 3050 - 3059, 2009.
[14] A. Martin and M.R. Emami, “An Architecture for Robotic Hardware-in-the-Loop Simulation,” Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 2162 - 2167, 2006.
[15] I. Sardellitti, J. Park, D. Shin and O. Khatib, “Air Muscle Controller Design in The Distributed Macro-Mini (DM2) Actuation Approach,” IROS 2007. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1822 - 1827, 2007.
[16] A. Suresh kumar, M. Subba Rao and Y.S.K. Babu, “Model Reference Linear Adaptive Control of DC Motor Using Fuzzy Controller,” TENCON 2008 - 2008 IEEE Region 10 Conference, pp. 1 - 5, 2008.
[17] J. Velagic and A. Aksamovic, “Fuzzy Logic System for Position Control and Current Stabilization of a Robot Manipulator,” EUROCON 2005.The International Conference on Computer as a Tool, Volume: 1, pp. 334 - 337, 2005.
[18] X. Wang, Y. Ge, B. Xiao and Y. Yu, “Application Study of Robotic Control System Based on Force Information,” Proceedings of International Conference on Information Acquisition, pp. 494 - 497, 2004.
[19] X. Wang and Y. Cui, “Self-Tuning Fuzzy Compensation Based Adaptive Impedance Controller for Robotic Machining,” 2010 2nd International Conference on Computer Engineering and Technology (ICCET), Volume: 6, pp. V6-475 - V6-478, 2010.
[20] J. Xiu, L. Liu, Y. Che and W. Shiyu, “Fuzzy Gain Based Adaptive Fuzzy Logic Controller for BLDCM Drive,” CCC 2008. 27th Chinese Control Conference, pp. 159 - 163, 2008.
[21] G. Xu and A. Song, “Fuzzy Variable Impedance Control for Upper-Limb Rehabilitation Robot,” FSKD '08. Fifth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 216 - 220, 2008.
[22] S. Xu, K. Zhou, Z. Luo and F. Yu, “Study of Fuzzy PID Control for a Semi-Track Air-Cushion Vehicle Based on Power Consumption Optimization,” ICVES 2006. IEEE International Conference on Vehicular Electronics and Safety, 2006. pp. 440 - 444, 2006.
[23] P. Yang, X. Kong, Z.J. Liu, H. Chen, Q. Zhao and J. Liu, “Hybrid Intelligent Joint Controller for Humanoid Robot, ” Proceedings of 2005 International Conference on Machine Learning and Cybernetics, pp. 4188 - 4192 Vol. 7, 2005.
[24] G. Yu, Z. Wang, L. Xie, K. Wu and B. Zhu, “The Research of Biped Robot Gait Generator Based on Decoupling Synthesis and ZMP Algorithm,” 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR), pp. 476 - 480, 2010.
[25] L.A. Zadeh, “Fuzzy Set,” Information and Control, Vol. 8, pp. 338 - 353, 1965.
[26] Y. Zhang, S. Cui and X. Yang, “New Control Strategy of Electro-Hydraulic Pressure Control System,” CNMT 2009. International Symposium on Computer Network and Multimedia Technology, 2009. pp. 1 - 4, 2009.
[27] W.H. Zhu, “Precision Control of Robots with Harmonic Drives,” 2007 IEEE International Conference on Robotics and Automation, pp. 3831 - 3836, 2007.
[28] dsPIC Micro Controller Specifications, [Online]. Available: www.microchip.com/
[29] TI DSP Micro Controller Specifications, [Online]. Available: www.ti.com/
[30] Faulhaber DC Motor Specifications, [Online]. Available: www.minimotor.ch/

無法下載圖示 全文公開日期 2015/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE