簡易檢索 / 詳目顯示

研究生: 鍾睿洲
Jui-Chou Chung
論文名稱: 具重心高度調適之雙足線性倒單擺步行控制
A Bipedal Locomotion Planning Based on Linear Inverted Pendulum Model with Adopting COM Model Uncertainty
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 羅仁權
Ren C. Luo
宋開泰
Kai-Tai Song
蘇順豐
Shun-Feng Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 72
中文關鍵詞: 線性倒單擺人形機器人雙足步態控制基於步態週期之陀螺儀穩定度指標
外文關鍵詞: Humanoid robot, linear inverted pendulum model, bipedal locomotion, cycle-based gyro stability index
相關次數: 點閱:237下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 線性倒單擺模型為雙足機器人步態生成方法之一,其特色為運算量較低且能提供即時步態生成,因此普遍應用於雙足機器人步行產生。線性倒單擺模型以機器人操作質心高度為主要系統參數。然而對於結構複雜之雙足機器人,操作質心高度之預估並不容易;不恰當的操作質心高度設定將影響到機器人步行時之穩定度與左右晃動程度。因此,機器人操作質心高度之自我調整將對於步行穩定度有著重要的影響。有鑑於此,本研究以一裝置於機器人髖部中心之陀螺儀量測髖部平面之角速度變化,並定義基於步態週期之陀螺儀穩定度指標(Cycle-based Gyro Stability Index;CBGSI)。此一CBGSI除了用來評估每一步態週期之穩定性外,並可以此一指標實現一閉回路比例控制器作為調整操作質心高度參數之依據。最後基於此一自調適操作質心高度演算法實現於一高52公分具19自由度之小型人形機器人平台之步態生成,達成機器人自調適找尋適合之操作質心高度參數,並且實作全向步行。


    Linear inverted pendulum model (LPIM) is usually used to generate real-time bipedal locomotion of a humanoid robot because of considering lower computational loads. LIPM uses the operational height of center of mass (CoM) of a biped robot as a primary parameter to generate locomotion trajectory. However, the operational height of CoM is hardly determined because of complicated mechanical structures of biped humanoid robots. Improper operational CoM height setting would induce locomotion stability problems. In addition, extra masses applied on the robot will also alter the operational CoM height setting. Therefore, self-adjustment of the operational CoM height is necessary to the study of bipedal locomotion stability. In this study, a gyro sensor is placed at the center of hips to measure the variation of angular velocities of the robot’s hip plane. The angular velocities in a cycle are further used to define the cycle-based gyro stability index (CBGSI). In addition to evaluate the stability of bipedal locomotion, the CBGSI is also capable of realizing a closed-loop proportional controller to automatically adjust the operational CoM height setting to improve the stability of bipedal locomotion. Finally, a 19-degrees-of-freedom biped humanoid robot with 52 cm in height is developed in this study to evaluate the performance of the proposed operational CoM height adjustment approach based on an omni-locomotion controller.

    致謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 X 第1章 緒論 1 1.1 研究背景、動機與目的 1 1.2 文獻回顧 3 1.2.1 擺線軌跡步態規劃 3 1.2.2 中樞模式產生器步態規劃 4 1.2.3 被動與半被動步態規劃 6 1.2.4 線性倒單擺步態規劃 7 1.2.5 以線性倒單擺為基礎之相關模型修正與步行穩定研究 10 1.2.6 文獻總結 12 1.3 貢獻 15 1.4 本文架構 16 第2章 研究方法 17 2.1 以線性倒單擺為基礎之步態生成 17 2.1.1 線性倒單擺之基本概念介紹 18 2.1.2 線性倒單擺之能量軌跡 20 2.1.3 三維線性倒單擺 21 2.1.4 質心軌跡規劃 22 2.2 以陀螺儀資訊為主之步態穩定度分析 29 2.3 具重心調適之線性倒單擺演算法 35 第3章 機器人案例探討 41 3.1 機器人機構設計 41 3.1.1 自由度配置 42 3.1.2 機器人逆向運動學 43 3.2 機器人控制架構 46 3.2.1 機器人動作控制器 47 3.2.2 機器人感測器 49 3.2.3 機器人致動器 50 3.3 系統整合 52 3.3.1 全向步態產生器 53 3.3.2 雙足軌跡生成 54 3.3.3 腳踝穩定控制器 55 第4章 實驗結果與討論 57 4.1 自調適質心高度演算法測試 57 4.2 不同比例控制增益之影響 61 4.3 機器人負重測試 62 4.4 腳踝穩定控制器測試 64 第5章 結論與未來研究方向 68 5.1 結論 68 5.2 未來研究方向 69 參考文獻 70

    [1] M. Vukobratovic, “Zero-Moment Point — Thirty Five Years of Its Life,” International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157 – 173, 2004.
    [2] S. Kajita and K. Tani, “Experimental Study of Biped Dynamic Walking in the Linear Inverted Pendulum Mode,” IEEE International Conference on Robotics and Automation, pp. 2885 – 2891, 1965.
    [3] P. Gibbons, M. Mason, A. Vicente, G. Bugmann, and P. Culverhouse, “Optimization of Dynamic Gait for Small Bipedal Robots,” IEEE International Conference on Humanoid Robots, pp. 9 – 14, 2009.
    [4] T. H. S. Li, Y. T. Su, S. W. Lai, and J. J. Hu, “Walking Motion Generation, Synthesis, and Control for Biped Robot by Using PGRL, LPI, and Fuzzy Logic,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 41, no. 3, pp. 736 – 748, 2011.
    [5] G. Taga, Y. Yamaguehi, and H. Shimizu, “Self-Organized Control of Bipedal Locomotion by Neural Oscillators in Unpredictable Environment,” Biological Cybernetics, vol. 159, pp. 147 – 159, 1991.
    [6] F. Faber and S. Behnke, “Stochastic Optimization of Bipedal Walking Using Gyro Feedback and Phase Resetting,” IEEE International Conference on Humanoid Robots, pp. 203 – 209, 2007.
    [7] 吳佳洋,「二足機器人之設計與控制」,碩士論文,臺灣大學,民國96年。
    [8] T. McGeer, “Passive Dynamic Walking,” The International Journal of Robotics Research, vol. 9, no. 2, pp. 62 – 82, 1990.
    [9] H. Dong, M. G. Zhao, J. Zhang, and N. Y. Zhang, “Hardware Design and Gait Generation of Humanoid Soccer Robot Stepper-3D,” Robotics and Autonomous Systems, vol. 57, no. 8, pp. 828 – 838, 2009.
    [10] S. Kajita, T. Yamaura, and A. Kobayashi, “Dynamic Walking Control of a Biped Robot Along a Potential Energy Conserving Orbit,” IEEE Transactions on Robotics and Automation, vol. 8, no. 4, pp. 431 – 438, 1992.
    [11] S. Kajita and K. Tani, “Study of Dynamic Biped Locomotion on Rugged Terrain,” International Conference on Advanced Robotics, pp. 741 – 746, 1991.
    [12] S. Kajita, O. Matsumoto, and M. Saigo, “Real-time 3D Walking Pattern Generation for a Biped Robot with Telescopic Legs,” IEEE International Conference on Robotics and Automation, vol. 3, pp. 2299 – 2306, 2001.
    [13] S. Kajita, F. Kanehiro, K. Kaneko, and K. Fujiwara, “A Realtime Pattern Generator for Biped Walking,” IEEE International Conference on Robotics and Automation, pp. 31 – 37, 2002.
    [14] N. Motoi, T. Suzuki, and K. Ohnishi, “A Bipedal Locomotion Planning Based on Virtual Linear Inverted Pendulum Mode,” IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 54 – 61, 2009.
    [15] V. H. Dau, C. M. Chew, and A. N. Poo, “Planning Bipedal Walking Gait Using Augmented Linear Inverted Pendulum Model,” IEEE Conference on Robotics, Automation and Mechatronics, no. 1, pp. 575 – 580, 2010
    [16] K. Erbatur and U. Seven, “An Inverted Pendulum Based Approach to Biped Trajectory Generation with Swing Leg Dynamics,” IEEE International Conference on Humanoid Robots, pp. 216 – 221, 2007.
    [17] Q. Tang, R. Xiong and J. Chu, “Tip over avoidance control for biped robot,” Robotica, vol. 27, no. 6, pp 883 – 889, 2009.
    [18] R. Renner and S. Behnke, “Instability Detection and Fall Avoidance for a Humanoid Using Attitude Sensors and Reflexes,” IEEE International Conference on Intelligent Robots and Systems, pp. 2967 – 2973, 2006.

    無法下載圖示 全文公開日期 2017/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE