簡易檢索 / 詳目顯示

研究生: 王博偉
Bo-Wei Wang
論文名稱: 低溫熱CVD成長摻鎵氧化鋅薄膜的熱退火研究
Annealing treatment on Ga-doped zinc oxide films prepared by LPCVD method at temperature lower than 200℃
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
周賢鎧
Shyankay Jou
黃柏仁
Bohr-Ran Huang 
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 藍光發光二極體透明導電薄膜層摻鎵氧化鋅低壓化學氣相沉積法退火處理
外文關鍵詞: Blue light LEDs
相關次數: 點閱:243下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的在於探討以低壓化學氣相沉積的方式製備具有高光學散射結構的摻鎵氧化鋅薄膜,以及藉由不同之退火模式來提升因低溫成長而不足的薄膜電性,以期用於取代氧化銦錫作為藍光發光二極體的透明導電接觸層。
實驗結果發現,當改變鍍膜溫度由145ºC升高到165ºC時,成長出厚度約在1m的摻鎵氧化鋅薄膜表面皆呈現不平整的晶癖構造。經由XRD測量顯示,在此低溫條件成長出的薄膜都具有明顯的(100)及(110)晶面的擇優取向特性。對照SEM影像發現,薄膜表面呈現橫躺的六方晶A面晶癖及錐狀的表面形態,再經由光學穿透度分析後發現對波長在455~475nm的藍光呈現7~32%的散射穿透率,惟在此溫度範圍下成長出的薄膜電阻率僅約為5 × 10-3 Ω∙cm。
首先選擇氫氮合成氣體氛圍下進行薄膜退火發現,400℃下的高溫退火雖可增加薄膜50%的載子濃度,但是載子遷移率卻呈現數倍的下降。當改以快速升溫退火方式處理本實驗所合成的摻鎵氧化鋅薄膜時,發現經以10℃/秒之升溫速率急速升到400℃並僅持溫120秒的退火程式處理過後的薄膜,其載子遷移率可在保有9 cm2/V∙s的水準以及載子濃度有因退火獲得的50%增幅效應下,使摻鎵氧化鋅薄膜的電阻率由退火前處理的5 × 10-3 Ω·cm下降到退火後的3 × 10-3 Ω·cm。


The aim of this study is to explore a suitable LPCVD reaction system that can form gallium doped zinc oxide (GZO) film as an alternative to indium tin oxide (ITO) functioned as the transparent conductive layer for blue light LEDS. To have GZO films that can diffuse light well in in wavelength of 455~475 nm for a better light extraction effect for the devices, films were synthesized intentionally at LPCVD reaction temperatures lower than 200ºC by which GZO films with surface roughness can be obtained. Emphasis is placed upon improving the electric conductivity of the low temperature synthesized films by using various annealing methods.
Firstly of all, we found the GZO films annealed in a forming gas consisted of a flow stream of [H2]/[N2] =5/50 sccm under 400ºC exhibited an improvement of 50% in carrier concentration. Nevertheless, the mobility dropped down dramatically. In contrast, the films annealed by a rapid thermal processing using a temperature ramping rate of 10ºC/s up to 400ºC and continuing to only a short period of 2 min, not only increased the carrier concentration but also preserved the mobility, resulting in a decrease of film resistivity from 5 × 10-3 Ω·cm to 3 × 10-3 Ω·cm.

摘要 IV Abstract V 致謝 VI 目錄 VII 圖索引 IX 表索引 XIII 第一章 緒論 1 1.1前言 1 1.2背景與文獻介紹 2 1.3 實驗的目的與方向 8 第二章實驗方法與步驟 10 2.1 實驗氣體與藥品 10 2.1.1 二乙基鋅(Diethylzinc, DEZn) 10 2.1.2 三乙基鎵(Triethylgallium, TEGa) 10 2.1.3 去離子水(Deionized water, DI water) 10 2.1.4 氬氣(Argon, Ar) 10 2.1.5 氮氣(Nitrogen, N2) 10 2.1.5 玻璃(glass) 11 2.1.6 丙酮(Acetone, CH3COCH3) 11 2.1.7 乙醇(Ethanol, C2H5OH) 11 2.2 實驗設備與步驟 12 2.2.1 實驗設備 12 2.2.2傳統退火爐 13 2.2.4 實驗步驟 14 2.3 分析儀器 15 2.3.1掃描式電子顯微鏡 (scanning electron microscope, SEM) 15 2.3.2霍爾量測儀 (Hall measurement) 16 2.3.3 X光繞射儀(X-ray Diffraction, XRD) 19 2.3.4 分光光度計(UV-VIS-NIR spectrophotometer) 20 2.3.5 X射線光電子能譜化學分析儀 ( X-ray photoelectron Spectrometer, XPS) 21 第三章結果與討論 22 3.1改變LPCVD製程條件 22 3.1.1實驗構想與目的 22 3.1.2結果與討論 23 3.2使用傳統退火爐並在低壓氣氛下退火 32 3.2.1實驗構想與目的 32 3.2.2 結果與討論 33 3.3在Forming gas下進行退火 36 3.3.1實驗構想與目的 36 3.3.2結果與討論 37 3.4使用快速退火爐進行退火 43 第四章總結 51 第五章未來展望 52 參考文獻 52

[1]M. Wang, L. Jiang, Y. Wang, E. J. Kim, S. H. Hahn, Journal of the American Ceramic Society 2015, 98, 3022-3028.
[2]C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, G. C. Chi, Applied Physics Letters 2007, 90, 142115.
[3]C. Huh, K.-S. Lee, E.-J. Kang, S.-J. Park, Journal of Applied Physics 2003, 93, 9383-9385.
[4]H. P. Maruska, J. J. Tietjen, Applied Physics Letters 1969, 15, 327-329.
[5]J. I. Pankove, E. A. Miller, D. Richman, J. E. Berkeyheiser, Journal of Luminescence 1971, 4, 63-66.
[6]J. I. Pankove, E. A. Miller, J. E. Berkeyheiser, Journal of Luminescence 1972, 5, 84-86.
[7]H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Japanese Journal of Applied Physics 1989, 28, L2112-2114.
[8]N. I. S. Nakamura, and M. Senoh, US patent 1994, 5,306,662.
[9]S. Nakamura, M. Senoh, N. Iwasa, S.-i. Nagahama, Japanese Journal of Applied Physics 1995, 34, L797.
[10]S. Nakamura, M. Senoh, N. Iwasa, S. i. Nagahama, Applied Physics Letters 1995, 67, 1868-1870.
[11]S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Appl. Phys. Lett 1996, 69.
[12]S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Applied Physics Letters 1997, 70, 868-870.
[13]L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, U. K. Mishra, IEEE Electron Device Letters 2001, 22, 457-459.
[14]J. Y. Tsao, IEEE Circuits and Devices Magazine 2004, 20, 28-37.
[15]L. Jae-Hong, L. Kyu Hwan, L. Dong Chan, Journal of the Korean Physical Society 2010, 57, 1229.
[16]D. Zhuang, J. H. Edgar, Materials Science and Engineering: R: Reports 2005, 48, 1-46.
[17]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, S. Nakamura, Applied Physics Letters 2004, 84, 855-857.
[18]J.-H. Lee, J.-T. Oh, J.-S. Park, J.-W. Kim, Y.-C. Kim, J.-W. Lee, H.-K. Cho, Physica Status Solidi C 2006, 3, 2169-2173.
[19]D.-H. Kang, J.-C. Song, B.-Y. Shim, E.-A. Ko, D.-W. Kim, S. Kannappan, C.-R. Lee, Japanese journal of applied physics 2007, 46, 2563.
[20]J.-C. Song, S.-H. Lee, I.-H. Lee, K.-W. Seol, S. Kannappan, C.-R. Lee, Journal of Crystal Growth 2007, 308, 321-324.
[21]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, G. Wang, Journal of Applied Physics 2008, 103, 014314.
[22]Y. Kim, H. Ruh, Y. Noh, M. Kim, J. Oh, Journal of Applied Physics 2010, 107, 063501.
[23]Y. Tao, T. Yu, Z. Yang, D. Ling, Y. Wang, Z. Chen, Z. Yang, G. Zhang, Journal of Crystal Growth 2011, 315, 183-187.
[24]T. Margalith, O. Buchinsky, D. Cohen, A. Abare, M. Hansen, S. DenBaars, L. Coldren, Applied Physics Letters 1999, 74, 3930-3932.
[25]Y. Lin, S.-J. Chang, Y.-K. Su, T.-Y. Tsai, C. Chang, S.-C. Shei, C. Kuo, S. Chen, Solid-State Electronics 2003, 47, 849-853.
[26]C.-L. Lee, W.-I. Lee, Applied physics letters 2007, 90.
[27]S. Chae, K. Kim, D. Kim, T. G. Kim, S. Yoon, B. Oh, D. Kim, H. Kim, Y. M. Sung, Applied physics letters 2007, 90.
[28]S.-P. Jung, D. Ullery, C.-H. Lin, H. P. Lee, J.-H. Lim, D.-K. Hwang, J.-Y. Kim, E.-J. Yang, S.-J. Park, Applied Physics Letters 2005, 87, 181107.
[29]J. S. Jang, T. Y. Seong, Journal of applied physics 2007, 101.
[30]R.-H. Horng, D.-S. Wuu, Y.-C. Lien, W.-H. Lan, Applied Physics Letters 2001, 79, 2925-2927.
[31]R. H. Horng, K. C. Shen, C. Y. Yin, C. Y. Huang, D. S. Wuu, Optics Express 2013, 21, 14452-14457.
[32]S. Faÿ, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Solar Energy Materials and Solar Cells 2005, 86, 385-397.
[33]吳軍緯, 以電漿輔助化學氣相沉積法製備表面粗糙化的摻鎵氧化鋅薄膜,2015.
[34]施敏, 半導體製程概論, 國立交通大學出版社,新竹市 2002.
[35]B. Du Ahn, S. Hoon Oh, C. Hee Lee, G. Hee Kim, H. Jae Kim, S. Yeol Lee, Journal of Crystal Growth 2007, 309, 128-133.
[36]K. Yim, H. W. Kim, C. Lee, Materials Science and Technology 2007, 23, 108-112.
[37]T. Yamada, A. Miyake, H. Makino, N. Yamamoto, T. Yamamoto, Thin Solid Films 2009, 517, 3134-3137.
[38]H. Makino, N. Yamamoto, A. Miyake, T. Yamada, Y. Hirashima, H. Iwaoka, T. Itoh, H. Hokari, H. Aoki, T. Yamamoto, Thin Solid Films 2009, 518, 1386-1389.

QR CODE