簡易檢索 / 詳目顯示

研究生: 楊柏軒
Pao-Hsuan Yang
論文名稱: 新穎電退火處理對冷軋純鎳之晶粒成長行為影響:微結構、織構與性質研究
Effects of Innovative Electrical Annealing Treatment on the Grain Growth Behavior in Cold-rolled Pure Nickel: A Study of Microstructure, Texture, and Properties
指導教授: 梁鍵隴
Chien-Lung Liang
口試委員: 梁鍵隴
林光隆
蘇德徵
林哲宇
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 93
中文關鍵詞: 電處理熱處理純鎳退火機械性質電性微結構錯位角織構再結晶晶粒成長
外文關鍵詞: Electro-treatment, Heat treatment, Pure Ni, Annealing, Mechanical property, Electrical property, Microstructure, Misorientation, Texture, Recrystallization, Grain growth
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

純鎳由於其優秀的耐腐蝕性,被廣泛應用於工業領域如化工運輸中的管道和法蘭的製造。然而,在製造這些工業組件的過程中,需要反覆進行退火處理,這也導致了使用傳統熱處理會有能耗高的隱患。新穎的電退火處理(Electrical annealing treatment)因其節能和高效的特性,被認為是傳統熱處理的一種潛在的替代方案,得以進一步有效控制材料的微結構和性質。本研究中對純鎳在電流引起的物理冶金行為進行了全面的研究,提供了對所產生的微結構和性質變化的詳細分析和討論,並與熱對照組實驗進行了比較。純鎳的電退火處理引起的性質變化通將透過微硬度和電阻率兩方面進行探討,分別使用微小維氏硬度計和四點探針儀進行測量。本研究使用電子背向散射繞射技術(Electron backscatter diffraction, EBSD)探討冷軋狀態和電處理純鎳條帶的微結構和織構變化。隨著電流密度的增加,電處理在超過臨界電流密度3.2 × 104 A/cm2通電1小時時誘發了嚴重的晶粒成長,晶粒成長被認為是導致顯著的微硬度降低(35.2%)和電阻率降低(11.4%)的主要原因。此外,電處理誘導了Σ3 60°<111>面心立方(Face-centered cubic, FCC)退火雙晶邊界比例的增加,進一步新穎電退火處理下晶界演變的機制也在這部分進行討論。局部方位差異(Kernel average misorientation, KAM)分析和幾何必要差排(Geometrically necessary dislocation, GND)密度的計算進一步支持了純鎳條帶電退火行為降低晶粒取向差異的現象。根據φ_2=0°,45°,65°的取向分佈函數(Orientation distribution function, ODF)圖可以發現由於晶粒成長,{001}<100>立方織構(Cube texture)比例增加。本研究還進行了一個熱對照組實驗以研究電流輔助處理的非熱效應貢獻。非熱效應的說明顯示它是導致微結構變化並引起性質改變的主要因素。與傳統熱處理相比,電退火處理提供了一個新的選擇,能夠通過改變處理過程的參數來控制材料性質,包括提高機械強度、增強導電性和通過細化微結構來改善性能。


Due to its excellent corrosion resistance, pure Ni is widely applied in various applications of the industry, for example, chemical shipping as the pipes or the flanges. However, repetitive annealing processes are necessary for the manufacture of these industrial components, which give rise to the concerns of severe energy consumption of the conventional heat treatment. Innovative electrical annealing treatment has been regarded as one potential alternative to conventional heat treatment due to its energy-saving and high-efficiency characteristics, aiming to manipulate the material’s microstructure and properties. In this study, a comprehensive investigation of the physical metallurgy behavior induced by the electric current in the pure Ni strips was conducted, offering a detailed analysis and discussion of the microstructural and property changes. The results were compared to those with the thermal annealing benchmark experiments. The changes in properties induced by the electrical annealing treatment of pure Ni were examined in terms of micro-hardness and electrical resistivity by using a Vickers micro-hardness tester and a four-point probe, respectively. The microstructures and textures of the as-rolled benchmark and current-treated pure Ni strips were investigated using electron backscatter diffraction (EBSD). Electro-treatment with an increasing current density above a threshold current density of 3.20 × 104 A/cm2 induced severe grain growth. Grain growth was proposed to contribute to the significant micro-hardness reduction of up to 35.2% and the 11.4% reduction in electrical resistivity. Moreover, the electro-treatment induced an increase in Σ3 60°<111> face-centered cubic (FCC) annealing twin boundary fraction. The mechanism of the boundary evolution under the innovative electrical annealing treatment was further discussed. The kernel average misorientation (KAM) analysis and the calculation of the geometrically necessary dislocation (GND) density further supported the electrical annealing behavior of the pure Ni strips to lower intra-grain misorientation. Based on the orientation distribution function (ODF) maps with φ_2=0°,45°,65°, it can be found that the {001)<100> Cube texture fraction increased due to grain growth. A thermal annealing benchmark experiment was also conducted to investigate the contribution of the athermal effect of the current-assisted treatment. The illustration of the athermal effect showed that it was the predominant factor in the microstructure evolution, which leads to variations in properties. The electrical annealing treatment offers a new option compared to the conventional heat treatment to manipulate material properties by alternating the parameters of the treatment process.

中文摘要 I Abstract II Acknowledgement IV List of Contents V List of Figures VII Chapter 1 Introduction 1 1.1. Pure Ni and Ni-based Alloys 1 1.2. Conventional Thermal Annealing Treatment of Metals 3 1.2.1. Recovery Phenomenon 5 1.2.2. Recrystallization Phenomenon 5 1.2.3. Grain Growth Phenomenon 8 1.2.4. Texture Evolution during Annealing 10 1.2.5. Twin Boundary Evolution during Annealing 12 1.3. Novel Electro-treatment of Metals 14 1.3.1. Introduction to Novel Electro-treatment 14 1.3.2. Theory of Electro-treatment 17 1.3.3. Effects of Electro-treatment on the Microstructure and Properties of Metals 20 1.4. Experimental Objective and Goals 27 Chapter 2 Experimental Procedures 28 2.1. Experimental Setup 28 2.2. Mechanical and Electrical Properties Investigation 34 2.3. Microstructure and Texture Investigations 37 2.4. Thermal Benchmark Experiment 40 Chapter 3 Results and Discussion 42 3.1. Variations in Mechanical and Electrical Properties under Electrical Annealing 42 3.2. Microstructure Evolutions under Electrical Annealing Treatment 45 3.3. Inter and Intra-grain Misorientation Evolutions under Electrical Annealing Treatment 49 3.3.1. Inter-grain Misorientation 49 3.3.2. Intra-grain Misorientation 55 3.4. Texture Evolution under Electrical Annealing Treatment 60 3.5. Mechanism of Micro-hardness Decrease under Electrical Annealing Treatment 67 3.5.1. The Grain Size Evolution Perspective 67 3.5.2. The Dislocation Annihilation Perspective 70 3.5.3. The Texture Evolution Perspective 73 3.6. Thermal Benchmark Experiment 76 3.7. Fast Grain Growth Experiment 79 3.8. Energy Consumption of Electro-treatment 83 Chapter 4 Conclusions 84 Chapter 5 Future Outlooks 85 Chapter 6 References 87

[1] G. Palumboa, F. Gonzaleza, A.M. Brennenstuhl, U. Erb, W. Shmayda, P.C. Lichtenberger, In-situ nuclear steam generator repair using electrodeposited nanocrystalline nickel, Nanostruct. Mater. 9 (1997) 737.
[2] Z.D. Li, H. Gu, K.G. Luo, C.L. Kong, H.L. Yu, Achieving high strength and tensile ductility in pure nickel by cryorolling with subsequent low-temperature short-time annealing, Engineering 33(2024) 190-203.
[3] D.W. Rice, P.B. P. Phipps, R. Tremoureux, Atmospheric corrosion of nickel, J. Electrochem. 127 (1980) 563.
[4] E.O. Ezugwu, Z.M. Wang, A.R. Machado, The machinability of nickel-based alloys: A review, J. Mater. Process. Technol. 86 (1999) 1-16.
[5] S.Q. Zhao, X.S. Xie, G.D. Smith, S.J. Patel, Research and improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740, Mater. Des. 27 (2006) 1120-1127.
[6] V.B. Singh, A. Gupta, The electrochemical corrosion and passivation behaviour of Monel (400) in concentrated acids and their mixtures, J. Mater. Sci. 36 (2001) 1433-1442.
[7] P. Kritzer; N. Boukis; E. Dinjus, Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures, Corros. Sci. 56 (2000) 1093-1104.
[8] J.D. Whittenberger, Properties of pure nickel after long term exposures to LiOH and vacuum at 775 K, J. Mater. Eng. 13 (1991) 257-271.
[9] T. Wuest, D. Klein, K.D. Thoben, State of steel products in industrial production processes, Procedia Eng. 10 (2011) 2220-2225.
[10] S. S. Kapur, M. Prasad, J.C. Crocker, T. Sinno, Role of configurational entropy in the thermodynamics of clusters of point defects in crystalline solids, Phys. Rev. B, 72 (2005) 014119.
[11] W. Sha, H.K.D.H. Bhadeshia, Modelling of recrystallisation in mechanically alloyed materials, Mater. Sci. Eng. A 223 (I997) 91-98.
[12] W.D. Callister Jr, D.G. Rethwisch, Callister’s Material Science and Engineering, tenth edition, John Wiley & Sons, Hoboken, New Jersey, 2020, p. 218.
[13] J.E. Bailey, P.B. Hirsch, The recrystallization process in some polycrystalline metals, Proc. R. Soc. Lond. A 267 (1962) 11-30.
[14] V.E. Fradkov, M.E. Glicksman, M. Palmer, K. Rajan, Topological events in two-dimensional grain growth: Experiments and simulations, Acta Metall. Mater 42 (1994) 2719-2727.
[15] R.E. Smallman, D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall. 12 (1964) 145-154.
[16] R. Jamaati, M.R. Toroghinejad, Effect of stacking fault energy on deformation texture development of nanostructured materials produced by the ARB process, Mater. Sci. Eng. A. 598 (2014) 263-276.
[17] D.A. Hughes, R.A. Lebensohn, H.R Wenk, A. Kumar, Stacking fault energy and microstructure effects on torsion texture evolution, Proc. R. Soc. Lond. A. 456 (2000) 921-953.
[18] C.B. Carter, S. M. Holmes, The stacking-fault energy of nickel, Phil. Mag. 35 (1977) 1161-1172.
[19] R.K. Ray, Rolling textures of pure nickel, nickel-iron, and nickel-cobalt alloys. Acta Metall. Mater. 43 (1995) 3861-3872.
[20] L.X. Wang, X.P. Chen, T.H. Luo, H.T Ni, L. Mei, P. Ren, Q. Liu, Y.F. Ding, L.J. Zhao, Effect of cross cold rolling and annealing on microstructure and texture in pure nickel, Rev. Adv. Mater. Sci. 59 (2020) 252–263.
[21] K.T. Kashyap, On the origin of recrystallization textures, Bull. Mater. Sci. 24 (2001) 23-26.
[22] X.P. Chen, L.F. Li, H.F. Sun, L.X. Wang, Q. Liu, Studies on the evolution of annealing twins during recrystallization and grain growth in highly rolled pure nickel, Mater. Sci. Eng. A 622 (2015) 108-113.
[23] D.P. Field, L.T. Bradford, M.M. Nowell, T.M. Lillo, The role of annealing twins during recrystallization of Cu, Acta Mater. 55 (2007) 4233-4241
[24] K.J.H. Al-Fadhalah, C.M. Li, A.J. Beaudoin, D.A. Korzekwa, I.M. Robertson Microplastic processes developed in pure Ag with mesoscale annealing twins, Acta Mater. 56 (2008) 5764-5774
[25] M. Qian, H.L. Luo, C.H. Ding , J.T. Wang, The effect of long term high temperature annealing on twinning and detwinning of the wrought Ni3Al-based alloy, Mater. Charact. 132(2017) 458-466
[26] B. Lin, Y. Jin, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, M. Bernacki, N. Bozzolo, A.D. Rollett, G.S. Rohrer, Observation of annealing twin nucleation at triple lines in nickel during grain growth, Acta Mater. 99 (2015) 63-68.
[27] V. Randle, The influence of annealing twinning on microstructure evolution, J. Mater. Sci. 40 (2005) 853-859.
[28] P. R. Rios, G. Gottstein, Texture evolution during normal and abnormal grain growth in an Al–1 wt% Mn alloy. Acta Mater. 49 (2001) 2511-2518.
[29] X.W. Li, X.J Guan, Z.P. Jia, P. Chen, C.X. Fan, F. Shi, Twin-related grain boundary engineering and its influence on mechanical properties of face-centered cubic metals: A review, Metals 13 (2023) 155.
[30] C.S. Li, B. Ma, Y. Song, K. Li, J. Dong, The Annealing Twins of Fe-20Mn-4Al-0.3C Austenitic Steels during Symmetric and Asymmetric Hot Rolling, Metals 8 (2018) 882.
[31] T.H. Chuang, C.H. Tsai, H.C. Wang, C.C. Chang, C.H. Chuang, J.D. Lee, H.H. Tsai, Effects of annealing twins on the grain growth and mechanical properties of Ag-8Au-3Pd bonding wires, J. Electron. Mater. 41(2012) 3215-3222
[32] E.M. Lehockey, G. Palumbo, P. Lin, Improving the weldability and service performance of nickel and iron-based superalloys by grain boundary engineering, Metall. Mater. Trans. A 29 (1998) 3069-3079.
[33] H. Xue, Y. Luo, F. Tang, X. Yu, X. Lu, J. Re, Solute segregation induced stabilizing and strengthening effects on Ni Σ3 [110](111) symmetrical tilt grain boundary in nickel-based superalloys, J Mater Res Technol. 11(2021) 1281-1289.
[34] A. Torrents, H. Yang, F.A. Mohamed. Effect of Annealing on Hardness and the,Modulus of Elasticity in Bulk Nanocrystalline Nickel, Metall Mater. Trans. A 41 (2010) 621-630.
[35] J.Z. Huo, M.Z. Wei, Y.J. Ma , Z.H. Cao, X.K. Meng. The enhanced strength and electrical conductivity in Ag/Cu multilayers by annealing process, Mater. Sci. Eng. A. 772 (2020) 138818
[36] X. Chen, L. Lu, K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins, J. Appl. Phys. 102 (2007) 083708.
[37] Y. Shen, L. Lu, Q. Lu, Z. Jin, K. Lu, Tensile properties of copper with nano-scale twins, J. Scr. Mater. 52 (2005) 989-994.
[38] K. Elsaid, E.T. Sayed, B.A.A. Yousef, M.K.H. Rabaia, M.A. Abdelkareem, A.G. Olabi, Recent progress on the utilization of waste heat for desalination: A review, Energy Convers. Manag. 221 (2020) 113105.
[39] C.L. Liang, K.L. Lin, The microstructure and property variations of metals induced by electric current treatment: A review, Mater. Charact. 145 (2018) 545-555.
[40] D. Waryoba, Z. Islam, B. Wang, A. Haque, Low temperature annealing of metals with electrical wind force effects, J Mater Sci Technol. 35 (2019) 465-472.
[41] H.B. Huntington, A.R. Grone, Current-induced marker motion in gold wires, J, Phys. Chem. Solids. 20 (1961) 71-87.
[42] R. Zhu, Y. Jiang, L. Guan, H. Li, G. Tang, Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy, J. Alloys Compd. 658 (2016) 548-554.
[43] Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, G.Y. Tang, Effects of dynamic electropulsing on microstructure and elongation of a Zn–Al alloy, Mater. Sci. Eng. A 501(2009) 125132.
[44] K. Okazaki, M. Kagawa, H. Conrad, An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titanium, Mater. Sci. Eng. 45 (1980) 109-116.
[45] C.M. Tan, A. Roy, Electromigration in ULSI interconnects, Mater. Sci. Eng. R 58 (2007) 1-75.
[46] P.C. Liang, K.L. Lin, Non-deformation recrystallization of metal with electric current stressing, J. Alloys Compd. 722 (2017) 690-697.
[47] H. Conrad, J. White, W. Cao, X. Lu, A. Sprecher, Effect of electric current pulses on fatigue characteristics of polycrystalline copper. Mater. Sci. Eng. A 145 (1991) 1-12.
[48] Z. Xu, G. Tang, S. Tian, J. He, Research on the engineering application of multiple pulses treatment for recrystallization of fine copper wire, Mater. Sci. Eng. A 424 (2006) 300-306.
[49] C.C. Wei, P.C. Liu, C. Chen, Electromigration-induced Pb and Sn whisker growth in SnPb solder stripes, J. Mater. Res. 23 (2008) 2017-2022
[50] H.M. Breitling, R.E. Hummel, Electromigration in thin silver, copper, gold, indium, tin, lead and magnesium films, J. Phys. Chem. Solids. 33 (1972) 845-852
[51] Y.H. Liao, C.H. Chen, C.L. Liang, K.L. Lin, A.T. Wu, A comprehensive study of electromigration in pure Sn: Effects on crystallinity, microstructure, and electrical property, Acta Mater. 200 (2020) 200-210
[52] Y.H. Chen, M.C. Chiu, H.C. Huang, C.L. Liang. Development of a novel processing technique for cold-rolled Al-3 Mg aluminum alloys via athermally-enhanced electrical annealing, Mater. Lett. 369 (2024) 136738.
[53] Y.W. Liu, X.Y. Tan, Y.M. Chen, X.Y. Zhu, W.J. Wang., L.M. Luo, Y.C. Wu, Microstructure evolution of the rolled tungsten during the current-assisted annealing treatment, Int. J. Refract. Met. Hard Mater. 121 (2024) 106339.
[54] X.L. Li, W. Liu, A. Godfrey, D. J. Jensen, Q. Liu. Development of the cube texture at low annealing temperatures in highly rolled pure nickel, Acta Mater. 55 (2007) 3531-3540
[55] Y.Z. Liu, B. Meng, M. Du, M. Wan, Electroplastic effect and microstructural mechanism in electrically assisted deformation of nickel-based superalloys, Mater. Sci. Eng. A 840 (2022) 142975.
[56] J.N, Liu, W. Liu, G.Y. Tang, R.F. Zhu. Fabrication of textured Ni–9.3at.%W substrate by electropulsing intermediate annealing method. Physica C 497 (2014) 119-122.
[57] X. Zhang, H.W Li, M. Zhan. Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: Local Joule heating effect, J. Alloys Compd. 742 (2018) 480-489.
[58] J.N. Liu, W. Liu, G.Y. Tang, R.F. Zhu, Influence of electropulsing treatment on the recrystallization and texture of Ni9W alloy strip, J. Mater. Res. 29 (2014) 596-603.
[59] C. Li, H. Tan, W.M. Wu, S. Zhao, H.B. Zhang, Effect of electropulsing treatment on microstructure and tensile fracture behavior of nanocrystalline Ni foil, Mater. Sci. Eng. A 657 (2016) 347-352
[60] W.B. Dai, W.C. Ma, X. Zhao, Effect of electric current direction on recrystallization rate and texture of a Cu–Zn alloy, J. Mater. Res. 28 (2013) 1378-1385.
[61] W.B. Dai, X.L. Wang, H.M. Zhao, X. Zhao, Effect of electric current on grain orientation in a cold rolled Fe-3%Si steel, Mater. Trans. 53 (2012) 229-233.
[62] S.A. Shahdad, J.F. McCabe, S. Bull, S. Rusby, R.W. Wassell, Hardness measured with traditional Vickers and Martens hardness methods, Dent. Mater. 23 (2007) 1079-1085.
[63] Y. Zalaoglu, T. Turgay, A.T. Ulgen, U. Erdem, M.B. Turkoz, G. Yildirim, A novel research on the subject of the load-independent microhardness performances of Sr/Ti partial displacement in Bi-2212 ceramics, J. Mater. Sci. Mater. Electron. 31 (2020) 22239–22251.
[64] I. Manika, J. Maniks, Effect of substrate hardness and film structure on indentation depth criteria for film hardness testing, J. Phys. D: Appl. Phys. 41 (2008) 074010.
[65] J. Chen, S.J. Bull, On the factors affecting the critical indenter penetration for measurement of coating hardness, Vacuum 83 (2009) 911–920.
[66] L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scr. Mater. 48 (2023) 119.
[67] M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine-grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A 527 (2010) 2738-2746.
[68] L.X. Wang, X.P. Chen, T.H. Luo, H.T Ni, L. Mei, P. Ren, Q. Liu, Y.F. Ding, and L.J. Zhao, Effect of cross cold rolling and annealing on microstructure and texture in pure nickel, Rev. Adv. Mater. Sci. 59 (2020) 252-263.
[69] L. Lai, W. Zeng, X. Fu, R. Sun, and R. Du, Annealing effect on the electrical properties and microstructure of embedded Ni–Cr thin film resistor, J. Alloys Compd. 538 (2012) 125-130.
[70] D.A. Hughes, N. Hansen, Microstructure and strength of nickel at large strains, Acta Mater. 48 (2000) 2985-3004.
[71] Y.H. Liao, C-L. Liang, K.L. Lin, and A.T. Wu, High dislocation density of tin induced by electric current, AIP Adv. 5 (2015) 127210.
[72] L. Jin, D.L. Lin, D.L. Mao, X.Q. Zeng, B. Chen, W.J. Ding, Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion, Mater. Sci. Eng. A. 423 (2006) 247–252.
[73] M. Booth, V. Randle, G. Owen, Time evolution of sigma 3 annealing twins in secondary recrystallized nickel, J. Microsc. 217 (2005) 164-166.
[74] J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels, Acta Mater. 59 (2011) 4387-4394.
[75] W. Wang, S. Lartigue-Korinek, F. Brisset, A.L. Helbert, J. Bourgon, T. Baudin, Formation of annealing twins during primary recrystallization of two low stacking fault energy Ni-based alloys, J Mater Sci. 50 (2015) 2167-2177.
[76] A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations, Acta Mater. 54 (2006) 2169-2179.
[77] B. Duggan, K. L¨ucke, G. K¨ohlhoff, C. Lee, On the origin of cube texture in copper, Acta Metall. Mater. 41 (1993) 1921-1927.
[78] L.L. Fu, G.H. Wu, C. Zhou, Z.Y. Xiu, W.S. Yang, J. Qiao. Effect of microstructure on the dimensional stability of extruded pure aluminum, Materials 14 (2021) 4797.
[79] A. Merlin, P. A. Beck, Study of the origin of the cube texture, Acta Metall. 1 (1953) 598-606.
[80] J.G. Brons, G.B. Thompson, A comparison of grain boundary evolution during grain growth in fcc metals, Acta Mater. 61 (2013) 3936–3944.
[81] J.M. Zhang, Y. Zhang, K.W. Xu, Dependence of stresses and strain energies on grain orientations in FCC metal films, J. Cryst. Growth. 285 (2005) 427–435.
[82] N. Hansen. Hall–Petch relation and boundary strengthening, Scr. Mater. 51 (2004) 801–806.
[83] P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness, Mater. Sci. Eng. A 529 (2011) 62–73.
[84] T. Borkar, R. Banerjee, Influence of spark plasma sintering (SPS) processing parameters on microstructure and mechanical properties of nickel, Mater. Sci. Eng. A 618 (2014) 176-181.
[85] Y. Tomota, P. Lukas, S. Harjo, J.H. Park, N. Tsuchida, D. Neov. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation, Acta Mater. 51 (2003) 819–830
[86] K. Nakashima, M. Suzuki, Y. Futamura, T. Tsuchiyama, S. Takaki, Limit of dislocation density and dislocation strengthening in iron, Mater. Sci. Forum 503–504 (2006) 627–632.
[87] C. Gu, X. Yang, W. Tang, C. Tian, Y. Xu, Effect of cube texture on local softening of stationary shoulder friction stir welding for thick-plate Al-Li alloy, Mater. Lett. 324 (2022) 132724.
[88] W. Österle, D. Bettge, B. Fedelich, H. Klingelhöffer, Modelling the orientation and direction dependence of the critical resolved shear stress of nickel-base superalloy single crystals, Acta Mater. 48 (2000) 689-700.
[89] X.L. Nan, H.Y. Wang, L. Zhang, J.B. Li, Q.C. Jiang. Calculation of Schmid factors in magnesium: Analysis of deformation behaviors, Scr. Mater. 67 (2012) 443–446
[90] D. Bettge, W. Österle, “Cube slip” in near [111] oriented specimens of a single-crystal nickel-base superalloy, Scr. Mater. 40 (1999) 389–395.
[91] I.S. Liu, On Fourier's law of heat conduction, Continuum. Mech. Therm. 2 (1990) 301-305.
[92] Z.P. Hu, Y. Liu, J. Dong, Z.Q. Ma, Y.C. Liu, The simultaneous improvement of strength and ductility of the 93W-4.6Ni-2.4Fe prepared by additive manufacturing via optimizing sintering post-treatment, Addit. Manuf. 46 (2021) 102216.
[93] Z.Y. Liang, Z.C. Luo, M.X. Huang, Temperature dependence of strengthening mechanisms in a twinning-induced plasticity steel, Int. J. Plast. 116 (2019) 192-202.

無法下載圖示 全文公開日期 2034/08/27 (校內網路)
全文公開日期 2034/08/27 (校外網路)
全文公開日期 2034/08/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE