簡易檢索 / 詳目顯示

研究生: 周育任
Yu-Jen Chou
論文名稱: 一階段製備生物活性玻璃及其微結構與生物活性之探討
Microstructure and bioactivity correlation of one-step synthesized bioactive glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
Wei-Hsing Tuan
宋振銘
Jenn-Ming Song
顏怡文
Yee-wen Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 生物活性玻璃噴霧熱解穿透式電子顯微鏡生物活性
外文關鍵詞: Bioactive glasses, Spray pyrolysis, Transmission microscopy, Bioactivity
相關次數: 點閱:422下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物活性玻璃 (Bioactive glasses) 藉由其優異的生物活性以及 可應用於多方面之潛力 (如藥物載體、骨植入物以及補牙骨粉等),於近年來已取得許多生物學者及工程師之關注。溶膠-凝膠法為目前製備生物活性玻璃最普遍之方法,並於近20年來廣泛地用於製備生物活性玻璃,然而此方法因其為非連續性之製程,需要較長之製備時間為其缺點。因此,本研究將利用噴霧熱解法 (Spray pyrolysis) 一階段製備出生物活性玻璃來克服上述之缺點,並針對微結構與生物活性之關聯來做探討。實驗中成功地利用噴霧熱解法藉由含有Si、Ca、P元素之前驅物溶液製備出球形生物活性玻璃 (Spherical bioactive glass, SBG) 以及球形介孔生物活性玻璃 (Mesoporous bioactive glass, MBG)。前驅物溶液須利用熱重分析儀判別其熱裂解溫度,製備出的粉體將利用 傅立葉轉換紅外線光譜儀、X光繞射儀、掃描式電子顯微鏡、穿透式電子顯微鏡、氮氣吸/脫附分析儀來鑑定。最後,體外生物活性測試將取製備後的粉體浸泡於模擬人體體液中,並再次地利用X光繞射儀 分析其生物活性。而後證明添加界面活性劑能夠阻止相分離之發生並提升其生物活性。


    Bioactive glasses (BGs) have attracted lots of attention recently from biologists and engineers due to their superior bioactive properties and possible applications such as drug carriers, bone implants and tooth repairing materials. The sol-gel method is one of the most popular procedures for fabricating BGs, and has been used to produce BGs for more than 20 years. However, there are some disadvantages like discontinuous processing and long processing time for the sol-gel method. In this study, spray pyrolysis (SP) method was presented to overcome these disadvantages by synthesizing BGs with one-step synthesis.The SP method has successfully synthesized spherical bioactive glass (SBG) and spherical mesoporous bioactive glass (MBG) particles by using Si-, Ca- and P-based precursors. The precursor solution has to characterized by thermogravimetric analysis to obtain its decomposition temperature, the resulting particles will be characterized by fourier transform infrared spectroscopy, X-ray diffractometer, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherm. Also, the in vitro bioactivity can be assessed by immersing the particles into simulated body fluid (SBF), and by characterization of X-ray diffractometer. At last, by adding surfactant in precursor solution, phase stability, mesoporous structure and higher surface area can be achieved.

    摘要 I Abstract II 目錄 III 圖目錄 IV 表目錄 VII 第一章、緒論 1 第二章、文獻回顧 3 2.1 生醫陶瓷 3 2.2 生物活性材料 7 2.2.1 生醫玻璃陶瓷 (A/W Glass-ceramic) 7 2.2.2 氫氧基磷灰石 (HA) 8 2.2.3 生物活性玻璃 (BG) 10 2.3 生物活性玻璃 12 2.3.1 生物活性之介紹 12 2.3.2 生物活性鍵結之機制 15 2.3.3 生物活性之測定方法 18 2.3.4 生物活性玻璃之組成 19 2.3.4 生物活性玻璃之合成方法 21 2.4 噴霧熱解法介紹 26 2.4.1 噴霧熱解法之簡介 26 2.4.2 顆粒成型機制 28 2.4.3 靜電沉積技術 30 2.5 介孔生物活性玻璃 32 2.5.1 介孔材料之演進 32 2.5.2 介孔生物活性玻璃之發展 36 第三章、實驗目的與方法 38 3.1 實驗設計及其目的 38 3.2 實驗原料 40 3.3 實驗儀器設備 41 3.4 樣品製備之步驟 42 3.4.1 生物活性玻璃粉體之製備與收集 42 3.5 樣品性質及分析方法 44 3.5.1 熱重分析儀 (Thermogravimetric analysis, TGA) 44 3.5.2傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FT-IR) 44 3.5.3 X光繞射儀 (X-ray diffractometer, XRD) 45 3.5.4 氮氣吸/脫附分析儀 (Nitrogen adsorption/desorption isotherm, B.E.T) 46 3.5.5 場發射掃描式電子顯微鏡 (Scanning electron microscope, SEM) 46 3.5.6 場發射穿透式電子顯微鏡 (Transmission electron microscope, TEM) 47 3.6 體外生物活性評估 48 第四章、結果與討論 49 4.1 前驅物之熱重分析 49 4.2 生物活性玻璃之性質分析 51 4.2.1 傅立葉氏轉換紅外線光譜儀分析 51 4.2.2 X光繞射分析 53 4.2.3 場發射掃描式電子顯微鏡 55 4.2.4 穿透式電子顯微鏡 61 4.2.5 能量散射光譜儀 (Energy dispersive X-ray spectroscopy) 67 4.2.6 氮氣吸/脫附分析 71 4.3 生物活性玻璃粉體製備之成型機制探討 73 4.4 生物活性之評估 77 4.4.1 體外生物活性測試 77 第五章、結論 82 參考文獻 83

    [1] B.H. Ali, Gentamicin nephrotoxicity in humans and animals: Some recent research, General Pharmacology: The Vascular System 26 (7) (1995) 1477-1487.
    [2] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research 5 (6) (1971) 117-141.
    [3] J.R. Jones, L.M. Ehrenfried, L.L. Hench, Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials 27 (7) (2006) 964-973.
    [4] A. Rainer, S.M. Giannitelli, F. Abbruzzese, E. Traversa, S. Licoccia, M. Trombetta, Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine, Acta Biomaterialia 4 (2) (2008) 362-369.
    [5] E.C.E. L. L. Hench, Biomaterials: an interfacial approach, Academic Press, Biomaterials 6 (1) (1982) 380.
    [6] L.L. Hench, Bioceramics: From concept to clinic, Journal of the American Ceramic Society 74 (7) (1991) 1487-1510.
    [7] S. Hulbert, J. Bokros, L. Hench, J. Wilson, G. Heimke, Ceramics in clinical applications, past, present and future, High Tech Ceramics.(Part A) (1986) 189-213.
    [8] T. Kokubo, S. Ito, S. Sakka, T. Yamamuro, Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5, Journal of Materials Science 21 (2) (1986) 536-540.
    [9] K. de Groot, Bioceramics of calcium phosphate, Journal of Clinical Engineering 9 (1) (1984) 52.
    [10] K. De Groot, Medical applications of calciumphosphate bioceramics, Journal of the Ceramic Society of Japan 99 (1154) (1991) 943-953.
    [11] S. Hulbert, J. Bokros, L. Hench, J. Wilson, G. Heimke, P. Vincenzini, High Tech Ceramics, Elsevier, Amsterdam, 1987.
    [12] S.-H. Rhee, J. Tanaka, Hydroxyapatite coating on a collagen membrane by a biomimetic method, Journal of the American Ceramic Society 81 (11) (1998) 3029-3031.
    [13] A. Cuneyt Tas, F. Korkusuz, M. Timucin, N. Akkas, An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics, Journal of Materials Science: Materials in Medicine 8 (2) (1997) 91-96.
    [14] R.R. Rao, H.N. Roopa, T.S. Kannan, Solid state synthesis and thermal stability of HAP and HAP – β-TCP composite ceramic powders, Journal of Materials Science: Materials in Medicine 8 (8) (1997) 511-518.
    [15] H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, Hydroxyapatite synthesized by a simplified hydrothermal method, Ceramics International 23 (1) (1997) 19-25.
    [16] P. Layrolle, A. Ito, T. Tateishi, Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics, Journal of the American Ceramic Society 81 (6) (1998) 1421-1428.
    [17] A. Jillavenkatesa, R.A. Condrate Sr, Sol–gel processing of hydroxyapatite, Journal of Materials Science 33 (16) (1998) 4111-4119.
    [18] C.M. Lopatin, V. Pizziconi, T.L. Alford, T. Laursen, Hydroxyapatite powders and thin films prepared by a sol-gel technique, Thin Solid Films 326 (1–2) (1998) 227-232.
    [19] M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clinical Orthopaedics and Related Research 157 (1981) 259-278.
    [20] L.L. Hench, The story of BioglassR, Journal of Materials Science: Materials in Medicine 17 (11) (2006) 967-978.
    [21] A. Ramila, B. Munoz, J. Perez-Pariente, M. Vallet-Regi, Mesoporous MCM-41 as drug host system, Journal of Sol-Gel Science and Technology 26 (1-3) (2003) 1199-1202.
    [22] M. Vallet-Regi, Nanostructured mesoporous silica matrices in nanomedicine, Journal of Internal Medicine 267 (1) (2010) 22-43.
    [23] P. Valerio, M.M. Pereira, A.M. Goes, M.F. Leite, The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production, Biomaterials 25 (15) (2004) 2941-2948.
    [24] T. Thamaraiselvi, S. Rajeswari, Biological evaluation of bioceramic materials-a review, Carbon 24 (31) (2004) 172.
    [25] L. Hench, Bioactive ceramics: theory and clinical applications, Bioceramics (1994) 3-14.
    [26] P. Ducheyne, Bioceramics: material characteristics versus in vivo behavior, Journal of Biomedical Materials Research (1987) 219.
    [27] J. Wilson, A. Clark, E. Douek, J. Krieger, W.K. Smith, J.S. Zamet, Clinical applications of bioglass implants, Bioceramics (1994) 415-422.
    [28] A.E. Clark, C.G. Pantano, L.L. Hench, Auger spectroscopic analysis of bioglass corrosion films, Journal of the American Ceramic Society 59 (1-2) (1976) 37-39.
    [29] D.M. Sanders, L.L. Hench, Mechanisms of glass corrosion, Journal of the American Ceramic Society 56 (7) (1973) 373-377.
    [30] L.J. Skipper, F.E. Sowrey, D.M. Pickup, K.O. Drake, M.E. Smith, P. Saravanapavan, L.L. Hench, R.J. Newport, The structure of a bioactive calcia-silica sol-gel glass, Journal of Materials Chemistry 15 (24) (2005) 2369-2374.
    [31] B.O. Fowler, Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution, Inorganic Chemistry 13 (1) (1974) 194-207.
    [32] R.A. Martin, H. Twyman, D. Qiu, J.C. Knowles, R.J. Newport, A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched BioglassR using surface sensitive shallow angle X-ray diffraction, Journal of Materials Science: Materials in Medicine 20 (4) (2009) 883-888.
    [33] K.H. Karlsson, K. Froberg, T. Ringbom, A structural approach to bone adhering of bioactive glasses, Journal of Non-Crystalline Solids 112 (1–3) (1989) 69-72.
    [34] E. Carlisle, Silicon: A requirement in bone formation independent of vitamin D1, Calcified Tissue International 33 (1) (1981) 27-34.
    [35] E.M. Carlisle, Silicon: a possible factor in bone calcification, Science (New York, N.Y.) 167 (3916) (1970) 279-280.
    [36] J.J.M. Damen, J.M. Ten Cate, Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation, Journal of Dental Research 71 (3) (1992) 453-457.
    [37] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials 26 (23) (2005) 4847-4855.
    [38] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, D. Magne, J. Guicheux, phosphate-dependent regulation of MGP in osteoblasts: Role of ERK1/2 and Fra-1, Journal of Bone and Mineral Research 24 (11) (2009) 1856-1868.
    [39] P.D. Saltman, L.G. Strause, The role of trace minerals in osteoporosis, Journal of the American College of Nutrition 12 (4) (1993) 384-389.
    [40] D. Arcos, D.C. Greenspan, M. Vallet-Regi, A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses, Journal of Biomedical Materials Research Part A 65A (3) (2003) 344-351.
    [41] P.J. Marie, The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis, Bone 46 (3) (2010) 571-576.
    [42] P. Valerio, M. Pereira, A. Goes, M.F. Leite, Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts, Biomedical Materials 4 (4) (2009) 045011.
    [43] M. Yamaguchi, Role of zinc in bone formation and bone resorption, The Journal of Trace Elements in Experimental Medicine 11 (2-3) (1998) 119-135.
    [44] H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, Journal of Biomedical Materials Research 62 (2) (2002) 175-184.
    [45] Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, N. Matsuura, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion, Journal of Biomedical Materials Research 62 (1) (2002) 99-105.
    [46] T. Uysal, A. Ustdal, M.F. Sonmez, F. Ozturk, Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits, The Angle Orthodontist 79 (5) (2009) 984-990.
    [47] R. Jugdaohsingh, K.L. Tucker, N. Qiao, L.A. Cupples, D.P. Kiel, J.J. Powell, Dietary Silicon Intake Is Positively Associated With Bone Mineral Density in Men and Premenopausal Women of the Framingham Offspring Cohort, Journal of Bone and Mineral Research 19 (2) (2004) 297-307.
    [48] R. Li, A.E. Clark, L.L. Hench, An investigation of bioactive glass powders by sol-gel processing, Journal of Applied Biomaterials 2 (4) (1991) 231-239.
    [49] L. Hench, H. Paschall, W. Allen, G. Piotrowski, Interfacial behavior of ceramic implants, Natl Bur. Stand. Spec. Publ 415 (1975) 19-35.
    [50] L. Hench, E. Ethridge, Biomaterials: the interfacial problem, Adv Biomed Eng 5 (1975) 35-150.
    [51] L. Hench, A. Clark, Adhesion to bone, Biocompatibility of orthopedic implants 2 (1982) 129-170.
    [52] S.-J. Shih, Y.-J. Chou, L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass, Ceramics International (0).
    [53] T.C. Pluym, Q.H. Powell, A.S. Gurav, T.L. Ward, T.T. Kodas, L.M. Wang, H.D. Glicksman, Solid silver particle production by spray pyrolysis, Journal of Aerosol Science 24 (3) (1993) 383-392.
    [54] T.C. Pluym, T.T. Kodas, L.-M. Wang, H.D. Glicksman, Silver-palladium alloy particle production by spray pyrolysis, Journal of Materials Research 10 (07) (1995) 1661-1673.
    [55] P.S. Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics 59 (3) (1999) 185-198.
    [56] C. Nascu, I. Pop, V. Ionescu, E. Indrea, I. Bratu, Spray pyrolysis deposition of CuS thin films, Materials Letters 32 (2-3) (1997) 73-77.
    [57] K. Okuyama, Preparation of micro-controlled particles usingaerosol process, Journal of Aerosol Science 22, Supplement 1 (0) (1991) S7-S10.
    [58] C.F. Clement, I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts, Atmospheric Environment 33 (3) (1999) 489-499.
    [59] C.Y. Chen, T.K. Tseng, S.C. Tsai, C.K. Lin, H.M. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, Ceramics International 34 (2) (2008) 409-416.
    [60] H.F. Kraemer, H.F. Johnstone, Collection of Aerosol Particles in Presence of Electrostatic Fields, Industrial & Engineering Chemistry 47 (12) (1955) 2426-2434.
    [61] S. Liu, P.K. Dasgupta, Automated System for Chemical Analysis of Airborne Particles Based on Corona-Free Electrostatic Collection, Analytical Chemistry 68 (20) (1996) 3638-3644.
    [62] Y. Luo, G.Z. Lu, Y.L. Guo, Y.S. Wang, Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: Synthesis, characterization and catalysis, Catalysis Communications 3 (3) (2002) 129-134.
    [63] G. Gerstberger, R. Anwander, Screening of rare earth metal grafted MCM-41 silica for asymmetric catalysis, Microporous and Mesoporous Materials 44–45 (0) (2001) 303-310.
    [64] B. Yuliarto, H. Zhou, T. Yamada, I. Honma, K. Asai, Synthesis of a Surface Photovoltage Sensor Using Self-Ordered Tin-Modified MCM-41 Films: Enhanced NO2 Gas Sensing, ChemPhysChem 5 (2) (2004) 261-265.
    [65] P. Horcajada, A. Ramila, J. Perez-Pariente, R. Vallet, amp, x, M., Influence of pore size of MCM-41 matrices on drug delivery rate, Microporous and Mesoporous Materials 68 (1–3) (2004) 105-109.
    [66] C.-G. Wu, T. Bein, Polyaniline Wires in Oxidant-Containing Mesoporous Channel Hosts, Chemistry of Materials 6 (8) (1994) 1109-1112.
    [67] D.A. Doshi, N.K. Huesing, M. Lu, H. Fan, Y. Lu, K. Simmons-Potter, B. Potter, A.J. Hurd, C.J. Brinker, Optically defined multifunctional patterning of photosensitive thin-film silica mesophases, Science 290 (5489) (2000) 107-111.
    [68] S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids, Journal of the American Chemical Society 104 (4) (1982) 1146-1147.
    [69] J.Y. Ying, C.P. Mehnert, M.S. Wong, Synthesis and Applications of Supramolecular-Templated Mesoporous Materials, Angewandte Chemie International Edition 38 (1-2) (1999) 56-77.
    [70] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, science 279 (5350) (1998) 548-552.
    [71] D. Zhao, P. Yang, N. Melosh, J. Feng, B.F. Chmelka, G.D. Stucky, Continuous mesoporous silica films with highly ordered large pore structures, Advanced Materials 10 (16) (1998) 1380-1385.
    [72] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chemistry of Materials 11 (10) (1999) 2813-2826.
    [73] S.-i. GJD, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chemical Reviews 102 (11) (2002) 4093-4138.
    [74] M. Vallet-Regi, Evolution of bioceramics within the field of biomaterials, Comptes Rendus Chimie 13 (1–2) (2010) 174-185.
    [75] I. Izquierdo-Barba, L. Ruiz-Gonzalez, J.C. Doadrio, J.M. Gonzalez-Calbet, M. Vallet-Regi, Tissue regeneration: A new property of mesoporous materials, Solid State Sciences 7 (8) (2005) 983-989.
    [76] A. Patterson, The Scherrer formula for X-ray particle size determination, Physical review 56 (10) (1939) 978.
    [77] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, Journal of Biomedical Materials Research 24 (6) (1990) 721-734.

    QR CODE