簡易檢索 / 詳目顯示

研究生: 吳威昇
Wei-Sheng Wu
論文名稱: 以模糊控制理論為基礎之六軸機械手臂模擬
Simulation of 6-DOF manipulator based on Fuzzy Logic Control
指導教授: 劉孟昆
Meng-Kun Liu
口試委員: 林紀穎
Chi-Ying Lin
藍振洋
JHEN-YANG LAN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: 模糊控制器環境模擬六軸機械手臂
外文關鍵詞: Maltab, 6-DOF Manipulator
相關次數: 點閱:323下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現實生活中,機械手臂作動為給定座標以求出所需作動角度,進而求出所需力/力矩。理想作動情形為實際座標位置需與理想座標位置一致,但往往因為有許多外部干擾所造成的力/力矩(例如:摩擦力、馬達阻力…等)導致實際值與理想值有誤差。為了能事先將誤差識別出來使實際情況改善,於是使用虛擬環境進行實境模擬。
本論文主要使用Matlab建置六軸機械手臂模擬環境,除了運動學(探討座標與關節角度之關係)之外,還加入動力學(探討力/力矩與關節角度之關係)理論,並且利用控制器理論控制手臂移動。由於現在鮮少見到在模擬環境模擬機械手臂之運作,本論文以現今最常見之六軸機械手臂為架構建置模擬環境。再者,目前工業機械手臂在運作時皆有位移誤差產生,本論文除了建置精確模擬環境外,還實現模糊控制器理論套入模擬環境以控制機械手臂,並且利用控制器將實際軌跡逼近理想軌跡,達到最小誤差。


In the real life, the control of series manipulator was given by a known coordinate which acquires movement angle, and therefore the needed force and/or torque could be revealed. The ideal control situation would be the perfect match between actual coordinate position and the ideal coordinate position. However, the load caused by external disturbances, such as friction between each joint and resistance caused by motor, would generate inaccuracy between the actual and the ideal position. In order to identify the inaccuracy in advance and improve the precision in the actual situation, the reality simulation was conducted in a virtual environment.
This research mainly used Matlab to build the simulation environment of six degrees of freedom series manipulator. In addition to the kinematics theory which discovers the relationship between coordinates and joint angles, this research also considered dynamics theory to discuss the relationship between force and/or torque and joint angle. Since only a few researches simulated manipulators in the virtual environment, this research used more common method of six degrees of freedom manipulator to conduct the simulation. Furthermore, displacement error often happened when industrial manipulators was operated. In addition to build an accurate simulation environment, this research also used fuzzy control theory to control the manipulator to follow the ideal trajectory and minimize error.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號表 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.4 研究貢獻與架構 7 第二章 機器人運動學 8 2.1 旋轉座標 8 2.2 尤拉角 10 2.3 座標轉換 12 2.4 D-H表示法 13 2.5 正向運動學 17 2.6 反向運動學 19 第三章 機器人動力學 27 3.1 速度分析 27 3.2 賈氏矩陣(JACOBIAN MATRIX) 30 3.3 反向動力學 32 第四章 模糊控制理論 37 4.1 理論架構 37 4.2 模糊關係方程式 39 4.3 論域分割與隸屬度函數型式 40 4.4 模糊控制規則 41 4.5 解模糊化 43 第五章 模擬實驗 45 5.1 軟體與模擬環境介紹 45 5.2 移動策略 46 5.3 模擬流程 49 5.4 模擬結果 51 第六章 結論與未來展望 65 6.1 結論 65 6.2 研究貢獻 67 6.3 未來展望 67 參考文獻 69 附錄A 73

[1] LITVIN, F.; CASTELLI, V. Robot's manipulators: Simulation and identification of configurations, execution of prescribed trajectories. In: Robotics and Automation. Proceedings. 1984 IEEE International Conference on. IEEE, 1984. p. 34-44.
[2] STONE, Henry W.; NEUMAN, Charles P. Dynamic modeling of a three degree-of-freedom robotic manipulator. IEEE transactions on systems, man, and cybernetics, 1984, 4: 643-654.
[3] LIU, Chang-Huan. A comparison of controller design and simulation for an industrial manipulator. IEEE Transactions on Industrial Electronics, 1986, 1: 59-65.
[4] MISRA, P.; PATEL, R. V.; BALAFOUTIS, C. A. Robust control of robot manipulators in Cartesian space. In: American Control Conference, 1988. IEEE, 1988. p. 1351-1356.
[5] KAO, Wei-Wen, et al. Repetitive control of a two degree of freedom scara manipulator. In: American Control Conference, 1989. IEEE, 1989. p. 1484-1490.
[6] SERAJI, Homayoun. Decentralized adaptive control of manipulators: theory, simulation, and experimentation. IEEE Transactions on Robotics and Automation, 1989, 5.2: 183-201.
[7] HSU, Feng-Yih; FU, Li-Chen. Adaptive robust fuzzy control for robot manipulators. In: Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on. IEEE, 1994. p. 649-654.
[8] WROBLEWSKI, Waldemar. Implementation of a model predictive control algorithm for a 6dof Manipulator-simulation results. In: Robot Motion and Control, 2004. RoMoCo'04. Proceedings of the Fourth International Workshop on. IEEE, 2004. p. 209-212.
[9] TSAI, Ching-Chih; HUNG, Chi-Chih; CHANG, Chih-Fu. Trajectory planning and control of a 7-DOF robotic manipulator. In: Advanced Robotics and Intelligent Systems (ARIS), 2014 International Conference on. IEEE, 2014. p. 78-84.
[10] HUTAMA, Isro; KUO, Chung-Hsien. Adaptive Sliding Mode Control of a 6-DOF RLED Robot Manipulator with Uncertain Parameters and External Disturbances. International Journal of Automation and Smart Technology, 2016, 6.1: 13-24.
[11] MARQUES, Silverio JC; BAPTISTA, Luis F.; DA COSTA, Jose Sa. Force/position control of robot manipulators: A fuzzy adaptive control approach. In: Control Conference (ECC), 1997 European. IEEE, 1997. p. 850-855.
[12] KIGUCHI, Kazuo; FUKUDA, Toshio. Fuzzy-neuro position/force control of robot manipulators-two-stage adaptation approach. In: Intelligent Robots and Systems, 1999. IROS'99. Proceedings. 1999 IEEE/RSJ International Conference on. IEEE, 1999. p. 448-453.
[13] HUANG, Yun-Cheng; LI, T.-ZS. Fuzzy terminal sliding-mode controller for robotic manipulators. In: Mechatronics, 2005. ICM'05. IEEE International Conference on. IEEE, 2005. p. 858-863.
[14] WANG, Wei-Yen, et al. TS fuzzy-neural control for robot manipulators. In: Advanced robotics and Its Social Impacts, 2008. ARSO 2008. IEEE Workshop on. IEEE, 2008. p. 1-6.
[15] WAI, Rong-Jong; YANG, Zhi-Wei; SHIH, Chih-Yi. Direct adaptive fuzzy-neural-network control for robot manipulator by using only position measurements. In: Industrial Electronics and Applications (ICIEA), 2010 the 5th IEEE Conference on. IEEE, 2010. p. 689-694.
[16] AMER, A. F.; SALLAM, E. A.; ELAWADY, W. M. Fuzzy pre-compensated fuzzy self-tuning fuzzy PID controller of 3 DOF planar robot manipulators. In: Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on. IEEE, 2010. p. 599-604.
[17] LIU, Shih-Min. Position Controls of a Serial Manipulator Using PID, Fuzzy Logic and Fuzzy-PID Controllers. 2013.
[18] MEDJGHOU, Ali, et al. Fuzzy switch-gain sliding mode control for robotic manipulators based on an extended Kalman filter. In: Modelling, Identification and Control (ICMIC), 2016 8th International Conference on. IEEE, 2016. p. 198-206.
[19] KIM, Ch S., et al. Fuzzy logic control of a robot manipulator based on visual servoing. In: Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International Symposium on. IEEE, 2001. p. 1597-1602.
[20] VELARDE-SANCHEZ, Jesús Arturo, et al. 5-DOF manipulator simulation based on MATLAB-Simulink methodology. In: Electronics, Communications and Computer (CONIELECOMP), 2010 20th International Conference on. IEEE, 2010. p. 295-300.
[21] QIN, Jinna; LÉONARD, Francois; ABBA, Gabriel. Experimental external force estimation using a non-linear observer for 6 axes flexible-joint industrial manipulators. In: Control Conference (ASCC), 2013 9th Asian. IEEE, 2013. p. 1-6.
[22] LI, Xinliang, et al. Kinematic analysis and simulation of ultrasonic testing manipulator. In: Nondestructive Evaluation/Testing (FENDT), 2014 IEEE Far East Forum on. IEEE, 2014. p. 148-152.
[23] Lung-Wen Tsai. ROBOT ANALYSIS: The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons, 1999.
[24] Shiuh-Jer Huang. Intelligent Control System.
[25] VP-G Series General Information About Robot, from http://www.densorobotics.com/download/dm/20
[26] Tsai, Kao Y., et al. Admissible motions of special manipulateors. Robotics and Automation, IEEE Transactions on, 1994, 10.3: 386-391.

QR CODE