簡易檢索 / 詳目顯示

研究生: 楊仁佑
Ren-you Yang
論文名稱: 低溫養護對爐石基無機聚合物工程性質之影響
Effects of Low Temperature Curing on Engineering Properties of Alkali-Activated Slag Geopolymer
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 葉為忠
W. Yeih
施正元
Jeng-Ywan Shih
陳君弢
C.T. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 173
中文關鍵詞: 無機聚合物低養護溫度乾縮鹼激發爐石粉水玻璃模數
外文關鍵詞: geopolymer, low curing temperature, drying shrinkage, alkali-activated slag, modulus of sodium silica
相關次數: 點閱:276下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究混合水、氫氧化鈉及矽酸鈉溶液作為爐石粉鹼性激發劑製成無機聚合物,在固定水玻璃模數條件下,改變激發劑用量、水固比及低溫養護條件,探討無機聚合物漿體新拌及硬固工程性質與砂漿硬固性質,並利用掃描式電子顯微鏡觀察漿體微觀結構變化。
    研究結果顯示:(1)無機聚合物工作性除隨水固比增加而提高外,亦與鹼激發劑濃度有關。當水固比為0.33時,鹼激發劑濃度由3%提高至5%時,流度值由106.3%增加至116.3%,若濃度提高至7%,流度值則降低至49.5%。(2)隨著鹼激發劑濃度增加,漿體初凝及終凝時間可分別降低至29分鐘及46分鐘。(3)無機聚合物漿體聚合熱溫度較一般卜作蘭水泥漿體水化熱高,當鹼激發濃度提高至7%,水化熱可達101 oC,但於15 oC低溫養護時,可將水化熱低降低約30 oC,工程性質亦略微提升。(4) 抗壓強度、動態彈性模數以及剪力模數與超音波波速會隨水固比降低而提升。(5)無機聚合物乾縮量隨鹼激發濃度提升而增加,隨養護溫度降低而增加。(6) 於相同水固比時,提升鹼激發量濃度及降低環境養護溫度可分別降低約4.7~5.3 %及約4.3~6.5 %熱傳導係數。(7) 掃描式電子顯微鏡檢測無機聚合物漿體結果發現:漿體結構外觀隨著養護環境溫度降低而趨近平整且更緻密。(8)無機聚合物應養護於70%以上濕度環境,以使工程性質及耐久性有較佳發展。


    This research used s the mixture of water, sodium hydroxide and sodium silicate as the alkali activator to produce the granulated blast furnace slag based geopolymer. Under the condition of fixed modulus of sodium silicate, various dosages of activator, water-solid ratios and low temperatures for curing were used to investigate the engineering properties of geopolymer paste at the fresh state, and geopolymer paste and mortar at the hardened state. In addition, the variations of paste microstructures were examined by the Scanning Electron Microscopy.
    The research results show that:
    (1) The flowability of geopolymer can be enhanced by increasing the concentration of alkali activator and water to solid ratio. At a fixed water to solid ratio of 0.33, the flowability of paste increases from 106.3 % to 116.3 % when the concentration of alkali activator increases from 3 % to 5 %, but reduces to 49.5% when the concentration increases to 7%.
    (2) With the increase of concentration of alkali activator, both the initial and final setting times can decrease to 29 and 46 minutes, respectively.
    (3)The polymerization temperature of geopolymer paster is higher than the hydration temperature of ordinary Portland cement paste. When the concentration of alkali activator increases to 7 %, then the heat of hydration temperature increases up to 101 oC. But when curint with a low temperature of15 oC, the heat of hydration temperature can be reduce by about 30 oC and the engineering properties can be enhance slightly.
    (4) The compressive strength, dynamic elastic modulus, shear modulus and ultrasonic pulse velocity will increase with the decrease of the water to solid ratio.
    (5) The drying shrinkage increases with the increased concentration of alkali activator and the decrease of the curing temperature.
    (6) Under same water-solid ratio, both the increase of the concentration of of alkali activators and reduction of curing temperature tend to reduce the thermal conductivity by 4.7~5.3% and 4.3~6.5%, respectively.
    (7) The result of SEM indicates that the surface microstructure of geopolymer paste becomes smoother and denser once thethe curing temperature decreases.
    (8) The engineering properties and durability will have a better development when the curing humidity is larger than 70%RH.

    第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究內容及流程 2 第二章文獻回顧 4 2.1 前言 4 2.2 無機聚合物的發展 4 2.3 無機聚合物的聚合反應機制 5 2.3.1 基本聚合反應機制 5 2.3.2 無機聚合物完整的結構型態 9 2.4 無機聚合物之組成材料影響 10 2.4.1 爐石粉 10 2.4.1.1 不同爐石粉屬性對鹼性激發溶液之影響 12 2.4.1.2 爐石粉屬性與水玻璃模數間之交互影響 13 2.4.1.3 爐石粉之表面積對於聚合反應之影響 14 2.4.2 鹼性激發溶液 15 2.4.2.1 不同鹼性激發溶液之影響 15 2.4.2.2 鹼性激發劑濃度之影響 17 2.4.2.3 以不同方式添加鹼性激發溶液之影響 17 2.5 配比因子與養護環境之影響 18 2.5.1 水玻璃模數與化合物比例間之影響 18 2.5.2 液固比之影響 20 2.5.3 養護環境與時間之影響 21 2.6 無機聚合物之體積穩定性 22 2.6.1 收縮發生機制 22 2.6.2 無機聚合物之收縮現象 22 2.6.3 抑制乾縮的方法 24 2.6.3.1 高溫養護 24 2.6.3.2 使用添加劑抑制乾縮 24 2.6.3.3 適當之鹼激發劑種類與濃度 26 2.7 無機聚合物之水化熱 26 2.7.1 激發劑種類對水化熱的影響 27 2.7.2 激發劑劑量對水化熱的影響 27 2.7.3 環境溫度對水化熱的影響 27 2.8 無機聚合物之鹼粒料反應 28 2.9 無機聚合物之優點及其應用 29 2.9.1 早期抗壓強度 29 2.9.2 防火性能 29 2.9.3 固化重金屬 30 第三章試驗計畫 45 3.1 試驗內容與流程 45 3.2 實驗材料 45 3.3 實驗儀器與設備 46 3.4 各實驗變數與項目 49 3.4.1 試驗內容說明 49 3.4.2 試體編號及項目說明 50 3.5 無機聚合物試體之拌和與製作 52 3.5.1 無機聚合物拌和程序 52 3.5.2 無機聚合物之試體製作 53 3.6 試驗方法 53 3.6.1 新拌性質試驗 53 3.6.2 硬固性質試驗 54 第四章結果與討論 71 4.1 無機聚合物漿體之新拌性質 71 4.1.1 流度 71 4.1.2 凝結時間 72 4.1.3 水化熱 73 4.2 無機聚合物漿體之硬固性質 74 4.2.1 抗壓強度 74 4.2.2 超音波波速 76 4.2.3 動態彈性模數與動態剪力模數 77 4.2.4 熱傳導係數 79 4.2.5 體積穩定性 81 4.3 無機聚合物砂漿之硬固性質 83 4.3.1 抗壓強度 83 4.3.2 超音波波速 85 4.3.3 動態彈性模數與動態剪力模數 86 4.3.4 熱傳導係數 88 4.4 無機聚合物之微觀性質 90 4.4.1 掃描式電子顯微鏡之微觀結構分析 90 第五章結論與建議 147 5.1 結論 147 5.2 建議 149 參考文獻 150

    1.Davidovits, J. (1982), “Mineral Polymers and method of making them,”USA Paten, No.4, pp. 349, 386.
    2.Davidovits, J. (1994), “Geopolymer:man-made rock geosynthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91- 139.
    3.Dombrowski, K. A., and Buchwald, M. Weil (2007), “The influence of calcium content on structure and thermal performance of fly ash based geopolymers,” Journal of Materials Science, Vol. 42, No. 9, pp. 3033-3042.
    4.Lloyd, R. R., Provis, J. L., and Van Deventer, J. S. J. (2009), “Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder,” Journal of Materials Science, Vol. 44, No. 2, pp. 620 - 631.
    5.陳志賢(2009),「含矽質廢棄物之無機聚合物」,博士論文,國立成功大學土木工程研究所。
    6.Shi, C., Krivenko, P. V., and Roy, D. (2006), Alkali-activated Cement and Concrete, London and New York: Taylor & Francis.
    7.Li, C., Sun, H., and Li, L. (2010), “A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cement,” Cement and Concrete Research, doi: 10.1016.
    8.Xu, H., Van Deventer, J. S. J., and Luckey, G. C. (2001), “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” Industrial Engineering Chemical Research, Vol. 40, pp. 3749-3756.
    9.李元凱(2008),「偏高嶺土聚合膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    10.林瑋倫(2009),「鹼激發爐石基膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    11.陳冠宇(2010),「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,碩士論文,國立台灣科技大學營建工程系。
    12.Xu, H., and Van Deventer, J. S. J. (2000) “The Geopolymerization of alumino-silicate minerals,” International Journal Minerals Process, Vol. 59, No. 3, pp. 247 -266.
    13.Van Jaarsveld, J. G. S., Van Deventer, J. S. J. and Lorenzen, L. (1997), “The potential use of geopolymeric materials to immobilize toxic metals: Part I,” Theory and application, Minerals Engineering, Vol. 10, No.7, pp. 659-669.
    14.黃立遠(2010),「飛灰基無機聚合物工程性質及應用之研究」,博士論文,國立台灣科技大學營建工程系。
    15.Xu, H., and Van Deventer, J. S. J. (1999), “The geopolymerisation of natural alumino-silicates,” Proceedings of Geopolymere 99 Second International Conference, edited by: Davidovits, J., Davidovits, R. and James, C., Institut Geopolymere, Saint-Quentin, France, pp. 43–64.
    16.Davidovits, J. (1999), “Chemistry of geopolymeric systems terminology,” Proceedings of Geopolymere 99 Second International Conference, edited by: Davidovits, J., Davidovits, R. and James, C., Institut Geopolymere, Saint-Quentin, France, pp. 9-40.
    17.Sun, W., Zhang, Y. S., and Lin, W. and Liu, Z. Y. (2004) “In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM,” Cement and Concrete Research, Vol. 34, pp. 935–940.
    18.Barbosa, V. F., MacKenzie, K. J. D., and Thaumaturgo, C. (2000) “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers,” International Journal of Inorganic Materials, Vol. 2, No.4, pp. 309–317.
    19.Duxson, P., Fernandez-Jimenez, A., and Provis, J. L. and Lukey, G. C. and Palomo, A. and Van Deventer, J. S. J. (2007), “Geopolymer technology: the current state of the art,” Journal of Material Science, Vol. 42, No.9, pp. 2917-2933.
    20.Davidovits, J. (2005), “Geopolymer chemistry and sustainable development. The poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry,” Geopolymer, Green Chemistry and Sustainable Development Solutions, edited by: Davidovits, J., Institut Geopolymere, Saint-Quentin, France, pp. 9-15.
    21.黃兆龍(1999),「混凝土性質與行為」,詹氏書局。
    22.Maragkos, I., Giannopoulou, I. P., and Panias, D. (2009), “Synthesis of ferronickel slag-based geopolymers,” Minerals Engineering, Vol. 22, No. 2, pp. 196-203.
    23.Palomo, A., Grutzeck, M. W., and Blanco, M. T. (1999), “Alkali-activated fly ashes a cement for the future,” Minerals Engineering, Vol. 29, No. 8, pp. 1323 - 1329.
    24.Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (1999), “Effect of Elevated temperature curing on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 10, pp. 1619-1625.
    25.Mehta, P. K. (1986), Concrete structure, properties and materials, Prentice-Hall .
    26.Puertas, F., Palacios, M., and Gil-Maroto, A. and Vazquez, T. (2009), “Alkali - aggregate behavior of alkali - activated slag mortars: effect of aggregate type,” Cement and Concrete Composite, Vol. 31, No. 5, pp. 277-284.
    27.Bakharev, T.,Sanjayan, J. G., and Chen, Y. B. (1999), “Alkali activation of Australian slag cements,”Cement and Concrete Research, Vol. 29, No. 1, pp.113-120.
    28.Collins, F. G., and Sanjayan, J. G. (1999), “Workability and mechanical properties of alkali activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 3, pp. 113 -120.
    29.蕭遠智(2002),「鹼活化電弧爐還原渣之水化反應特性」,碩士論文,國立中央大學土木工程系。
    30.Wang, S. D., Scrivener, K. L., and Pratt, P. L. (1994), “Factors affecting the strength of alkali-activated slag,” Cement and Concrete Research, Vol. 24, No. 6, pp. 1033–1043.
    31.Shi, C., and Day, R. L. (1996), “Selectivity of alkaline activators for the activation of slag,” Cement, Concrete and Aggregates, Vol. 18, No. 1, pp. 8-14.
    32.Shi, C., and Li, Y. (1989), “Investigation on some factors affecting the characteristic of alkali-phosphorus slag cement,” Cement and Concrete Research, Vol. 19,No.4, pp. 527 -533.
    33.Shi, C., and Xie, P. (1998), “interface between cement paste and quartz sand in alkali-activated slag mortars,” Cement and Concrete Research, Vol. 28, No. 6, pp. 1619-1625.
    34.Shi, C., and Day, R. L. (1996), “Some factors affecting early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 26, No. 3, pp. 439-447.
    35.Shi, C., and Day, R. L. (1995), “A calorimetric study of early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 25, No.6, pp. 1333 – 1346.
    36.Song, S., and Jennings, H. M. (1999), “Pore solution chemistry of alkali-activated groud granulated blast-furnace slag,” Cement and Concrete Research, Vol. 29, No. 2, pp. 159-170.
    37.Glukivski, V. D. (1979), Alkali-earth binder and concrete produced with them, USSR, Russian , Visheka shkola, Kiev.
    38.Phair, J. W., and Van Deventer, J. S. J. (2002), “Effect of silicate activator pH on microstructural characteristics of waste-based geopolymers,” International Journal Minerals Process, Vol. 66, No. 1-4, pp. 121-143.
    39.Brough, A. R., Holloway, M., and Sykes, J. and Atkinson, A. (2000), “Sodium silicate-based alkali-activated slag mortars Part II: The retarding effect of additions of sodium chloride or malic acid,” Cement and Concrete Research, Vol. 30, No. 9, pp. 1375 - 1379.
    40.Komnitasa, K., Zaharaki, D., and Perdikatsis, V. (2009), “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,”Journal of Hazardous Materials, Vol. 161, No. 2-3, pp. 760–768.
    41.Phair, J. W., and Van Deventer J. S. J. (2001), “Effect of silicate actvator pH on the leach and material characteristics of waste-based inorganic polymers,” Minerals Engineering, Vol. 14, No. 3, pp. 289–304.
    42.付興華、陶文宏、孫鳳金(2008),「水玻璃對地聚物膠凝材料性能影響的研究」,水泥工程,濟南,第二期,第6-10頁。
    43.Silva, P. D., Sagoe – Crenstil, K. and Sirvivatnanon, V. (2007), “Kinetics of geopolymerization: Role of Al2O3 and SiO2,” Cement and Concrete Research, Vol. 37, No. 4, pp. 512 - 518.
    44. 馬鴻文、凌發科、楊靜、王剛(2002),「利用鉀長石尾礦制備礦物聚合材料的實驗研究」,地球科學-中國地質大學學報,北京,第二十七卷,第五期,第576 - 583頁。
    45. 鄭娟榮,周同和,劉麗娜(2007),「鹼-偏高嶺石-礦渣系膠凝材的凝結硬化性能研究」,矽酸鹽通報,鄭州,第二十六卷,第六期,第1064 - 1067頁。
    46.Kong, D. L. Y., and Sanjayan, J. G. (2008), “Damage behavior of geopolymer composite exposed to elevated temperatures,” Cement and Concrete Research, Vol. 30, No. 10, pp. 986-991.
    47.Ravikumar, D., Peethamparan, S., and Neithalath, N. (2010), “Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder,” Cement and Concrete Composites, Vol. 32, No. 6, pp. 399-410.
    48.Wang, S. D., Pu, X. C., and Scrivener, K. L., and Pratt, P. L. (1995), “Alkali - activated cement and concrete. A review of properties and problems,” Advances in Cement Research, Vol. 7, pp. 93-102.
    49.李宜桃(2003),「鹼活化還原渣收縮及抑制方法之研究」,碩士論文,國立中央大學土木工程研究所。
    50.Palacios, M., and F. Puertas, (2007), “Effect of shrinkage-reducing admixtures on the properties of alkali - activated slag mortars and pastes,”Cement and Concrete Research, Vol.37, No. 3, pp. 691 - 702.
    51.Shi, Caijun (1996), “Strength, pore structure and permeability of alkali - activated slag mortars,” Cement and Concrete Research, Vol. 26, No. 12, pp. 1789-1799.
    52.Collins, F., and Sanjayan, J. G. (2000), “Effect of pore size distribution on drying shrinkage properties of alkali - activated slag concrete, ” Cement and Concrete Research, Vol. 30, No. 9, pp. 1401-1406.
    53.Bakharev, T., Sanjayan, J. G., Cheng, Y. B., (2000), “Effect of admixtures on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 30, No. 9, pp. 1367 - 1374.
    54.Cengiz Duran Atiş, Cahit Bilim, zlem Celik, Okan Karahan (2009), Influence of activator on the strength and drying shrinkage of alkali - activated slag mortar, Construction and Buiding Materials, Vol. 23, pp. 548 - 555.
    55.Davidovits, J., (1999), Fire proof Geopolymeric,St.Quentin, FranceCordi-Geopolymere,pp. 165 - 170.
    56.Phair, J. W., Van Deventer, J. S., and Smith, J. J. D. (2004), “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers,” Applied Geochemistry, Vol. 19, No. 3, pp. 423–434.
    57.林孟曄(2006),「利用燃煤底灰製成無機聚合材料之研究」,碩士論文,國立台北科技大學材料及資源工程系所。
    58.金漫彤(2005),「土壤聚合物固化重金屬技術及終產物研究」,碩士論文,浙江大學。
    59.Fernandez-Jimenez, A., Palomo, J. G., Puertas, F., Alkali-Activated Slag Mortars Mechanical Strength Behaviour, Cement and Concrete Research,29, 1313-1321, 1999.
    60.Davidovits, J., Global Warming Impact on the Cement and AggregatesIndustries, World Resource Review, 6(2), 263-278, 1994.
    61.Krizan, D., and Zivanovic, B. (2002), “Effects of dosage and modulus of water glass on early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 32 , No. 8, pp. 1181 – 1188.

    無法下載圖示 全文公開日期 2014/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE