簡易檢索 / 詳目顯示

研究生: 彭予柱
Yu-Chu Peng
論文名稱: 以水固體積比詮釋不同密度混凝土之工程性質
The Effect of Water-to-Solid Volume Ratio on the Engineering Properties of Concrete
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 蘇 南
none
林建宏
none
顏 聰
none
彭耀南
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 241
中文關鍵詞: 重質混凝土耐久性體積穩定性新的拌合程序水固體積比質與量輕質混凝土
外文關鍵詞: high-density concrete, durability, volume stability, the new mixing procedure, water/solid ratio, Quality and quantity, low-density concrete.
相關次數: 點閱:191下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要探討緻密配比法(Densified Mixture Design Algorithm, DMDA)對於不同密度粒料所設計與拌製之高流動性飛灰混凝土之工程行為。本研究使用緻密配比法之向前緻密法(Forward Packing Model, FPM)、向後緻密法(Backing Packing Model,BPM)與傳統混凝土配比,分析水泥漿質與量,與拌合水量,建立以水泥漿濃度差的觀念,以新式的拌合程序(從w/c迄至w/s),強化品質均勻性與減少機械的損耗;同時,針對輕質骨材(比重1.9取自於石門水庫沉泥燒結而成,直徑1公分)與天然砂石(比重2.64)、鋼珠(比重7.8,直徑0.5與1公分)以此為骨材,分別設計不同水泥漿品質和漿量的配比之輕質、常重與重質混凝土。量測的工程性質包含工作性、裂縫敏感性等新拌性質;硬固性質包含抗壓強度、超音波速、表面電阻和氯離子電滲量等;裂縫敏感性與長度變化等,體積穩定性亦是本文探討重點。試驗結果顯示,不論任何密度粗粒料混凝土,緻密配比法只要固定水泥漿量,改變水泥漿品質時,高品質水泥漿配比(低w/cm和w/c),呈現較佳的新拌性質、硬固行為和體積穩定性,此與傳統混凝土採用低w/c和高強度提升混凝土品質的策略是一致的;水泥漿量則是越少,工程性質、耐久性和體積穩定性呈現較佳;為達到體積穩定性,早期水養護(至少7天以上),並且減少拌合水量是必要的。綜合本研究分析結果,所有混凝土在水泥漿質佳量少的原則下,束制拌和水量與水固體積比,會有較佳工程性質、耐久性和體積穩定性。


    This study discusses the effects of the densified mixture design algorithm (DMDA) on the high-flowing fly ash concrete prepared using aggregates of varying density. Using the DMDA forward packing model (FPM), backing packing model (BPM), and the traditional mix design method, this study investigates the quality and quantity of slurry, and the quantity of mixing water in the slurry. The results indicate that varying slurry concentrations combined with a new mix design (altered from w/c to w/s) strengthens the uniformity of the concrete and reduces wear and tear on machines. Additionally, this study designed lightweight, normal, and heavyweight concretes of varying slurry quality and quantity using lightweight aggregates (with a specific gravity of 1.9, silt from the Shimen reservoir, and 1 cm in diameter), natural sand (with a specific gravity of 2.64), and steel balls (with a specific gravity of 7.8, and 0.5 and 1 cm in diameter), respectively.. We examined the engineering properties of concrete in both its newly mixed state and its hardened state. In its newly mixed state, we examined the workability and crack sensitivity. In its hardened state, we examined the compressive strength, ultrasonic pulse velocity, surface resistance, and chloride ion permeability. This study also explored crack sensitivity, changes in length, and volume stability of slurry. The results show that regardless of the density of coarse-aggregate concrete, the slurry volume in DMDA does not differ when the components are altered. The high-quality slurry ratio (low w/cm and w/c) provides a superior newly mix property, hardened behavior, and volume stability. This design is similar to the traditional mix design of using low w/c and high-strength concrete to improve the overall quality. The less slurry induces better engineering results, such as its workability, durability, and volume stability. To achieve volume stability of the slurry, early moisture curing (within the first 7 days) and reduced water quantity are required. Comprehensive analysis of the results indicates that limiting the water contained and water to solid ratio improves engineering properties, such as durability, and volume stability when less amount of good slurry is used.

    第一章 緒論-------------------------------------------------------------------------------------------1 1-1研究動機-------------------------------------------------------------------------------------------1 1-2研究目的-------------------------------------------------------------------------------------------1 1-3研究方法與範圍----------------------------------------------------------------------------------2 1-4研究流程-------------------------------------------------------------------------------------------2 第二章 文獻回顧--------------------------------------------------------- ---------------------------4 2-1組成材料-------------------------------------------------------------------------------------------4 2-1-1粒料-----------------------------------------------------------------------------------------------4 2-1-2骨材分類-----------------------------------------------------------------------------------------5 2-1-3輕質骨材-----------------------------------------------------------------------------------------6 2-1-4 重質骨材----------------------------------------------------------------------------------------6 2-1-5水泥-----------------------------------------------------------------------------------------------6 2-2ACI配比設計準則--------------------------------------------------------------------------------7 2-2-1配比設計基本過程----------------------------------------------------------------------------8 2-2-2 ACI混凝土配比設計-------------------------------------------------------------------------8 2-2-3 輕質混凝土-----------------------------------------------------------------------------------13 2-2-4常重混凝土------------------------------------------------------------------------------------14 2-2-5重質混凝土------------------------------------------------------------------------------------14 2-3緻密混凝土配比準則--------------------------------------------------------------------------14 2-3-1配比的考量------------------------------------------------------------------------------------14 2-3-2緻密配比流程---------------------------------------------------------------------------------16 2-3-3輕質混凝土------------------------------------------------------------------------------------20 2-3-4緻密混凝土------------------------------------------------------------------------------------20 2-3-5重質混凝土------------------------------------------------------------------------------------21 2-3-6混凝土工程性質(新拌與硬固性質)-----------------------------------------------------21 第三章不同密度混凝土配比「質」「量」法則分析-------------------------------------------50 3-1混凝土緻密配比邏輯--------------------------------------------------------------------------50 3-1-1粒料堆積推求模式--------------------------------------------------------------------------50 3-1-2水泥漿「量」的推求模式--------------------------------------------------------------------57 3-1-3水固重量比與水固體積比-----------------------------------------------------------------59 3-2混凝土中水泥漿「質」「量」的表現方法---------------------------------------------------63 3-2-1水泥漿「量」的呈現--------------------------------------------------------------------------63 3-2-2 ACI配方水泥漿「質」的表現法-----------------------------------------------------------65 3-2-3不同單位重混凝土配比「質」「量」分析-------------------------------------------------67 3-3參數關連性---------------------------------------------------------------------------------------69 3-3-1拌合程序與用水量參數的影響-----------------------------------------------------------69 3-3-2用水量參數體積變化-----------------------------------------------------------------------70 3-3-3水灰比與水固比體積比--------------------------------------------------------------------72 3-4硬固性質分析-----------------------------------------------------------------------------------75 3-4-1抗壓強度---------------------------------------------------------------------------------------75 3-4-2氯離子電滲量---------------------------------------------------------------------------------77 3-4-3不同單位重新拌混凝土析離問題與防制----------------------------------------------77 3-4-4 w/s與抗壓強度-------------------------------------------------------------------------------79 3-4-5體積穩定性------------------------------------------------------------------------------------79 第四章 試驗計畫---------------------------------------------------------------------------------118 4-1試驗流程----------------------------------------------------------------------------------------118 4-2試驗材料----------------------------------------------------------------------------------------118 4-2-1水泥--------------------------------------------------------------------------------------------118 4-2-2細骨材-----------------------------------------------------------------------------------------118 4-2-3飛灰--------------------------------------------------------------------------------------------119 4-2-4高爐石-----------------------------------------------------------------------------------------119 4-2-5矽灰--------------------------------------------------------------------------------------------119 4-2-6粗骨材(輕質骨材)--------------------------------------------------------------------------119 4-2-7粗骨材(石子)--------------------------------------------------------------------------------119 4-2-8粗骨材(重質骨材)-------------------------------------------------------------------------119 4-2-9強塑劑----------------------------------------------------------------------------------------120 4-2-10水---------------------------------------------------------------------------------------------120 4-2-11本試驗所添加之聚丙烯纖維(PP)----------------------------------------------------120 4-3 試驗儀器與設備-----------------------------------------------------------------------------120 4-3-1 坍度、坍流度試驗-----------------------------------------------------------------------120 4-3-2 裂縫敏感度試驗--------------------------------------------------------------------------120 4-3-3 混凝土抗壓試驗--------------------------------------------------------------------------121 4-3-4 乾縮量測------------------------------------------------------------------------------------121 4-3-5硫酸鹽浸泡試驗---------------------------------------------------------------------------121 4-3-6 超音波速量測試驗-----------------------------------------------------------------------122 4-3-7表面電阻量測試驗------------------------------------------------------------------------122 4-3-8混凝土氯離子滲透試驗------------------------------------------------------------------122 4-3 試驗項目---------------------------------------------------------------------------------------123 第五章 不同密度混凝土「質」與「量」工程性質-------------------------------------------136 5-1混凝土工程性質-------------------------------------------------------------------------------136 5-2新拌工程性質----------------------------------------------------------------------------------137 5-3小結-----------------------------------------------------------------------------------------------146 5-3-1.緻密配比法----------------------------------------------------------------------------------146 5-3-2.採用緻密配比法調配之優生纖維混凝土--------------------------------------------146 5-3-3塑性收縮裂縫-------------------------------------------------------------------------------146 5-3-4添加PP纖維能有效抑制塑性裂縫產生與成長------------------------------------146 5-3-5添加PP纖維硬固成效---------------------------------------------------------------------146 5-3-6混凝土長度變化量隨著拌和水量增加而增加--------------------------------------146 5-3-7添加PP纖維可減少混凝土長度變化量----------------------------------------------146 5-3-8綜台各項試驗分析-------------------------------------------------------------------------147 5-3-9試驗顯示趨勢-------------------------------------------------------------------------------147 第六章 不同密度混凝土「質」與「量」體積穩定性----------------------------------------170 6-1混凝土體積穩定性---------------------------------------------------------------------------170 6-1-1塑性收縮--------------------------------------------------------------------------------------170 6-1-2自生體積收縮-------------------------------------------------------------------------------171 6-1-3乾燥收縮--------------------------------------------------------------------------------------172 6-1-4碳化收縮--------------------------------------------------------------------------------------173 6-1-5熱收縮與乾縮-------------------------------------------------------------------------------174 6-2水泥漿「質」與「量」的體積穩定性--------------------------------------------------------175 6-2-1常重混凝土-----------------------------------------------------------------------------------175 6-2-2輕質混凝土-----------------------------------------------------------------------------------183 6-2-3重質混凝土-----------------------------------------------------------------------------------184 6-3 Vp與長度極限變化--------------------------------------------------------------------------185 6-4體積穩定性與耐久性------------------------------------------------------------------------190 6-4-1Mass concrete(巨積混凝土)---------------------------------------------------------------191 6-4-2巨積混凝土(San Marga Iraivan Temple-美國夏威夷)------------------------------192 6-4-3配方分析-------------------------------------------------------------------------------------193 6-5小結----------------------------------------------------------------------------------------------198 第七章 結論與建議------------------------------------------------------------------------------222 7-1結論-----------------------------------------------------------------------------------------------222 7-1-1不同密度混凝土「質」與「量」法則-----------------------------------------------222 7-1-2工程性質-------------------------------------------------------------------------------------223 7-1-3體積穩定性----------------------------------------------------------------------------------224 7-2建議-----------------------------------------------------------------------------------------------225 第八章 參考文獻---------------------------------------------------------------------------------227 附錄---------------------------------------------------------------------------------------------------240 作者簡介---------------------------------------------------------------------------------------------241

    1.黃兆龍. 混凝土性質與行為. 臺北灣,詹氏書局,1997.
    2.黃兆龍,李隆盛,湛淵源,等. 沉泥輕質骨材製造與基礎性能分析研究,中國建築研討會論文集,臺北灣,( 1999).
    3.楊錦川,謝進南. 水庫淤沙研究課題之規劃,水庫永續經營研究計畫成果研討會論文集中國建築研討會論文集. 臺北灣,:36(1998).
    4. Peng ,Y. C.and C. L.Huang .“Engineering properties of sintered waste sludge as lightweight aggregate in a densified concrete mixture”. J Chongqing Univ: Eng Ed, 8(4):p231~238, (2009).
    5.Lin WM, Wu JY. “Structural lightweight granular concrete economic assessment” [J]. Taiwan Road Engineering, (2001).
    6. ACI Committee 221. Standard Practice for Selecting Proportions for Structural Lightweight Concrete(ACI221.2-81). USA, (1981).
    7. ACI Committee 221. Standard Practice for Selecting Proportions for Normal Heavyweight and Mass Concrete(ACI221.2-91). USA, (1991).
    8. Liou J S. A Study on the flexural properties of lightweight concrete beams, masters degree thesis. Civil Engineering Institute of National Taiwan University,121:53, (2007).
    9.Huanga S C, Changb F C, Lob S L, et al..“Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash.” Journal of Hazardous Materials, 144: 52, (2007).
    10. Jo B W, Park S K, Park J B. “Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA)”. Cement & Concrete Composites, 29: 128, (2007).
    11. Skuratova V A, Abu Alazm S M, Altynov V A. a,“Luminescence of aggregate centers in lithium fluoride irradiated with high energy heavy ions”. Nucl Instr and Meth in Phys Res B, 191: 251, (2002).
    12.Huang, C.L, Li ,L.S, Jhan ,Y.Y, et al.“A study and analysis on the manufacture of lightweight aggregates from waste sludge and its basic properties” [J]. Journal of the Architectural Institute (6): 38-45, (2006).
    13.Peng Y.C.“A discussion into the influence of unit weight of aggregates towards the properties of concrete” [D]. Taiwan: National Taiwan of Science and Technology, (2007).
    14Mun KJ. Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete [J] Construction and Building Materials, 21(7): 1583-1588, (2007).
    15.Tan KF. “Study on characteristics of lightweight aggregate and high performance lightweight aggregate concrete” [J]. Journal of Tongji University: Natural Science, 34(4): 472-475, (2006).
    16.West Findings. Studies on artificial lightweight aggregate concrete [Z]. (1965).
    17.Lin W.M .and Wu JY. “Structural lightweight granular concrete economic assessment” [J]. Taiwan Road Engineering, 26(3): 56-76, (1999).
    18.Lin WM. “High-performance lightweight concrete from the perspective of 921 major earthquake” [N]. Taiwan: Technician’s Newspaper: 152-187, (1999).
    19.Wang HY, Li LS, Chen SH, et al. “Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing” [J]. Computers and Concrete, 6(3): 225-234, (2009).
    20.Kayali O, Zhu B. “Chloride induced reinforcement corrosion in lightweight aggregate high-strength fly ash concrete” [J]. Construction and Building Materials, 19(4): 327-336, (2005).
    21.Kayali O. “Fly ash lightweight aggregates in high performance concrete” [J]. Construction and Building Materials, 22(12): 2393-2399, (2008).
    22.Anagnostopoulos IM, Stivanakis VE. “Utilization of lignite power generation residues for the production of lightweight aggregates” [J]. Journal of Hazardous Materials, 163(1): 329-336, (2009).
    23.Gunning PJ, Hills CD, Carey PJ. “Production of lightweight aggregate from industrial waste and carbon dioxide” [J]. Waste Managemen, 29(10): 2722-2728 t, (2009).
    24.Demirdag S, Gunduz L.“Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units” [J]. Construction and Building Materials, 22(3): 135-142, (2008).
    25.Sari D, Pasamehmetoglu AG. “The effects of gradation and admixture on the pumice lightweight aggregate concrete” [J]. Cement and Concrete Research, 35(5): 936-942, (2005).
    26. Taiwan Construction Research Center. “Artificial aggregate and lightweight concrete special edition” [Z]. Taiwan: Construction Information, 120: 211-235, (1994).
    27.Liou JS.“A study on the flexural properties of lightweight concrete beams” [D]. TAIWAN: Civil Engineering Institute of National Taiwan University, (2007).
    28Huang SC, Chang FC, Lo SL, et al. “Production of lightweight aggregates from mining residues”, heavy metal sludge, and incinerator fly ash [J]. Journal of Hazardous Materials, 144: 52-58, (2007).
    29.Jo BW, Park SK, Park JB. “Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA)” [J]. Cement & Concrete Composites , 29(2): 128-135(2007).
    30.Skuratov VA, Abu AlAzm SM, Altynov VA.“Luminescence of aggregate centers in lithium fluoride irradiated with high energy heavy ions” [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 191(1-4): 251-255, (2002).
    31.Peng ,Y.C. “Study on different unit weight of high performance concrete” [J]. Journal of Beijing University of Science and Technology, 32(3). (2010).
    32.Peng ,Y.C. “The study of different unit weight of aggregate on the properties of concrete” [D]. Taipei :National Taiwan University, (1999).
    33.Malhotra V M. Making concrete “greener with fly ash – supplementary cementing materials can reduce greenhouse gas into the environment” [J].Concrete International, ,19(5):61-66(1999).
    34.Lin H T.“Green architecture in hot-humid climates” [M]. Taipei: Chan’s Arch-Publishing, (1996).
    35.Huang L L. “Potential analysis and evaluation of reducing CO2 emissions in the steel industry” [D]. Taipei: National Cheng Kung University, (1996).
    36.Yang W H. “Potential analysis and evaluation of reducing greenhouse gases in the cement industry” [D]. Taipei: National Cheng Kung University ,(1996).
    37.Mindess S , Young J F. Concrete[M]. USA: Prentice-Hall, (1981).
    38.Mehta P K. Concrete – structure, properties, and materials[M]. USA: Prentice-Hall, (1986).
    39.Wang HY, Li LS, Chen SH, et al. “Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing” [J]. Computers and Concrete, 6(3): 225-234, (2009).
    40.Kayali O, Zhu B. “Chloride induced reinforcement corrosion in lightweight aggregate high-strength fly ash concrete” [J]. Construction and Building Materials, , 19(4): 327-336(2005).
    41.Kayali O. Fly ash lightweight aggregates in high performance concrete [J]. Construction and Building Materials, 22(12): 2393-2399, (2008).
    42.Gunning PJ, Hills CD, Carey PJ. Production of lightweight aggregate from industrial waste and carbon dioxide[J]. Waste Management, 29(10): 2722-2728. (2009).
    43.Demirdag S, Gunduz L. Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units [J]. Construction and Building Materials, 22(3): 135-142, (2008).
    44.Sari D, Pasamehmetoglu AG. The effects of gradation and admixture on the pumice lightweight aggregate concrete[J]. Cement and Concrete Research, , 35(5): 936-942 (2005).
    45.Peng YC. Study on different unit weight of high performance concrete [J]. Journal of Beijing University of Science and Technology, , 32(3):231-238(2010).
    46.Liou J S. A study on the flexural properties of lightweight concrete beams [D]. Taipei: Civil Engineering Institute, (2007).
    47.Huang S C, Chang F C, Lo S L, et al. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash [J]. Journal of Hazardous Materials, , 144: 52-58 (2007).
    49.Peng Yuchu and C.L.Huang“Engineering properties of sintered waste sludge as lightweight aggregate in a densified concrete mixture” [J].Journal of Chongqing University , ,8(4): 231-238(2009).
    50.ACI Committee 211. “Guide for selecting proportions for high-strength concrete”. ACI Mater J;90:272–283(1993).
    51.Chiang CC, Chenn YY, Lin TY, Hwang CL. The application of electric arc furnace reduction slags to high performance concrete. Journal of the Chinese Institute of Civil and Hydraulic Engineering;16:167–178(2004).
    52.Esfahani M. Reza,Kianoush M. Reza,“Bond strength of glass fibre reinforced polymer reinforcing bars in normal and self-consolidating concrete”, Canadian Journal of Civil Engineering, v 32, n 3, p 553-560, June (2005).
    53.Gregori Amedeo,Ferron Raissa , Sun Zhihui,Shah Surendra , “Experimental simulation of self-consolidating concrete formwork pressure”, ACI Materials Journal, v 105, n 1, p 97-104, January/February (2008).
    54.Geiser J.“Metallurgical slag-create a future construction material”. The International Associate of Metallurgical Slag Recycle and Utilization. Beijing,. p. 1–8(1999).
    55.Hogan FJ, Meusel JW. “Evaluation for durability and strength development of a ground granulated blast furnace slag”. Cem Concr Aggregates;3:40–52(1981).
    56.Hwang Soo-Duck,Khayat Kamal H.,“Effect of mixture composition on restrained shrinkage cracking of self-consolidating concrete used in repair”, ACI Materials Journal, v 105, n 5, p 499-509, September/October (2008).
    57.Koehler Eric P. ,Fowler David W.,“Dust-of-fracture aggregate microfines in self-consolidating concrete”, ACI Materials Journal, v 105, n 2, p 165-173, March/April (2008).
    58.Kwan Albert K. H.,Ng, Ivan Y. T.,“Performance criteria for self-consolidating concrete”, Transactions Hong Kong Institution of Engineers, v 15, n 2, p 35-41, June (2008).
    59.Khalifa AJ, Ramzi T, Mohammed AG.“Use of Copper slag and cement by-pass dust as cementitious materials”. Cem Concr Aggregates;24:7–12(2002).
    60.Luxán MP, Sotolongo R, Dorrego F, Herrero E. “Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace”. Cem Concr Res;30:517–519(2000).
    61.Li G, Zhao X.“Properties of concrete incorporating fly ash and ground granulated blast-furnace slag”. Cem Concr Compos;25:293–299(2003).
    62.Mihashi H, Yan X, Arikawa S. “Strength properties and frost damage resistance of high performance concrete using blast furnace slag and silica fume. In: Schwesinger P, editor”. Proceedings of the Fourth Weimar Workshop on High Performance Concrete. Germany,. p. 195–204(1995).
    63.Monshi A, Asgarani MK. “Producing Portland cement from iron and steel slag and limestone”. Cem Concr Res;29:1373–1377(1999).
    64.Mihashi H, Yan X, Arikawa S. “Strength properties and frost damage resistance of high performance concrete using blast furnace slag and silica fume”. High Performance Concrete: Material Properties and Design. Germany,. p. 195–204(1995).
    65.Paczkowski Piotr,Kaszynska Maria, “Self-consolidating concrete for on-site bridge applications”, International Conference organised by the Institution of Civil Engineers, ICE, p 312-320, (2007).
    66.PENG Yu-chu, HUANG Chau-long. “Engineering properties of sintered waste sludge as lightweight aggregate in a densified concrete mixture” [J]. J Chongqing Univ: Eng Ed [ISSN 1671-8224], , 8(4): 231-238(2009).
    67.Roy DM, Idorn GM. “Hydration, structures, and properties of blast furnace slag cements, mortars, and concrete.” ACI J 1982;82:444–457(2004).
    68.Schindler Anton K.,Barnes Robert W.,Roberts James B., Rodriguez Sergio, “Properties of self-consolidating concrete for prestressed members”, ACI Materials Journal, v 104, n 1, p 53-61, January/February (2007).
    69.Sakuraya T. “The utilizing condition of metallurgical slag and steel slag for Japanese Refinery Steel Industry”. The International Associate of Metallurgical Slag Recycle and Utilization, Beijing. p. 15–20, (1999).
    70.Wu X, Zhu H, Hou X, Li H. “Study on steel slag and fly ash composite Portland cement”. Cem Concr Res;29:1103–1106(1999).
    71.Whitcomb Brent L., Kiousis Panos D., “Development of self-consolidating concrete for thin wall applications including validation”, Journal of Materials in Civil Engineering, v 21, n 10, p 587-593, (2009).
    73. Zhang MH, Bilodeau A, Malhotra VM, Kim KS, Kim JC.“Concrete incorporating supplementary cementing materials: effect on compressive strength and resistance to chloride-ion penetration”. ACI Mater J;96:181–189(1999).
    75.J.L. Huang, Concrete Property and Behavior, Zan’s Publishing House (1997).
    76.J.L. Huang, L.C. Li, Y.Y. Jan, W.C. Yang, and Y.J. Peng, “Sludge Light-weight
    Aggregate-Production and Basic Property Analysis”(2007).
    77.J.C. Yang and J.N. Hsieh, “Water reservoir sludge research topics planning, Water Reservoir Sustainable Management Research Plan”, Achievements Seminar Papers, pp. 36 (1998).
    79.CEB/FIP“Lightweight Aggregate Concrete”The Construction Press, pp. 65 (1977).
    80.Sawamoto, Takehiro, Tsuji, Masanori, Technique to produce recycled aggregate concrete with crushed concrete waste, Journal of the Society of Materials Science, Japan, v 49, n 10, pp. 1079–1084, Oct (2000).
    81.ACI Committee 221, Standard practice for selecting proportions for structural lightweight concrete (ACI 221.2–81), (1981).
    82.West Findings, Studies on artificial light-weight aggregate concrete, (1965).
    83.W.M. Lin and J.Y. Wu, “Structural light-weight granular concrete economic assessment”, Taiwan Road Engineering, 26, No. 3, pp. 8 (1999).
    84.W.M. Lin,“High-performance light-weight concrete from the perspective of 921 major earthquake”, Technician’s Newspaper 152, 11,06 ,(1999).
    85.W.M. Lin and J.Y. Wu, “The latest development of concrete technology”, Taiwan Road Engineering, 27, No. 1, pp. 10 (1999).
    86. Liou, J.S., A “Study on the Flexural Properties of Lightweight Concrete Beams, masters degree thesis”, Civil Engineering Institute of National Taiwan University, June (2007).
    87.Su-Chen Huanga, Fang-Chih Changb, Shang-Lien Lob, Ming-Yu Lee c, Chu-Fang Wang a, Jyh-Dong Lin c,“Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash”, Journal of Hazardous Materials 144 52–58,(2007).
    88.Byung-wan Jo, Seung-kook Park , Jong-bin Park,“Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA)”, Cement & Concrete Composites 29 128–135, (2007).
    89.V.A. Skuratov, S.M. Abu AlAzm, V.A. Altynov.“Luminescence of aggregate centers in lithium fluoride irradiated with high energy heavy ions”, Nucl. Instr. and Meth. in Phys. Res. B 191 251–255 (2002).
    90.W.M. Lin and J.Y. Wu, “Discussion on the feasibility of application of light-weight concrete in bridge engineering from the perspective of 921 major earthquake”, Taiwan Road Engineering, 26, No. 12, pp. 41 (2000).
    91.K. Sakr, E. EL-Hakim, “Effect of high temperature or fire on heavy weight concrete properties”, Cement and Concrete Research 35 590–596 (2005).
    92.Guo, Junqing,Lei, Zixue, Chen, Penglang, Zhou, Tianhua, “Experimental study on ductility and bearing capacity of concrete frame columns with central reinforcement under high axial compression ratio”, Jianzhu Jiegou Xuebao/Journal of Building Structures, Vol. 29, No. 4, pp. 89–95, August (2008).
    93.Popovics, Sandor, Ujhelyi, Janos,“Contribution to the concrete strength versus water-cement ratio relationship”, Journal of Materials in Civil Engineering, Vol. 20, No. 7, pp. 459–463, July (2008).
    94.Vu, Xuan Hong, Malecot, Yann, Daudeville, Laurent, Buzaud, Eric,“Experimental analysis of concrete behavior under high confinement: Effect of the saturation ratio”, International Journal of Solids and Structures, Vol. 46, No. 5, pp. 1105–1120, March 1 (2009).
    96.LI Wenxia,ZHAO Chiyun,GUO Zhimeng,YIN Sheng,“Study on Radial Crushing Strength of Ceramic-lined Steel Composite Pipe”, Journal of University of Science and Technology Beijing,p229~237. (2000).
    97.Golaszewski, J., Szwabowski, J., Soltysik, P., “Influence of air entraining agents on workability of fresh high performance concrete”, Proceedings of the International Conference on Admixtures—Enhancing Concrete Performance, p. 171–182, (2005)
    98.Li, Qiu-Yi, Wang, Zhi-Wei, Yang, Ying-Zi, “Evaluation methods of workability of lightweight aggregate concrete”, Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, Vol. 37, SUPPL. 1, pp. 253–256, May (2005).
    99.Punkki, Jouni, Golaszewski, Jacek, Gjorv, Odd E., “Workability loss of high-strength concrete”, ACI Materials Journal, Vol. 93, No. 5, pp. 427–431, Sep-Oct (1996).
    100.Yu-Cheng Kana, Kuang-Chih Pei, Chien-Lung Changa,“Strength and fracture toughness of heavy concrete with various iron aggregate inclusions”,Nuclear Engineering and Design 228 119–127,(2004).
    101.ZHANG Yong , HE Xinbo , QU Xuanhui , WANG Yuhui,Spark plasma sintering of silicon carbide,Journal of University of Science and Technology Beijing ,p435~442,(2008).
    102Yu-Chu PENG, Chao-Lung HWANG,“Carbon steel slag as cementitious
    material forself-consolidating concrete”, J Zhejiang Univ-Sci A (Appl Phys &
    Eng) 11(7) (2010).
    103 Richard, P., Cheyrezy, M.H., “Reactive Powder Concretes with High Ductility and 200–800MPa Compressive Strength, in” ‘Concrete Technology. Past, Present, and Future’, ed. P. K.Metha, S. Francisco, U.S.A., 1994, 507–518(2008).
    104.Yunsheng, Z., Wei, S., Sifeng, L., Chujie, J., and Jianzhong, L., Preparation of C200 green reactive powder concrete and its static–dynamic behaviors, Cement and Concrete Composites, 30(9) 831–838, (2008).
    105. Yazici, H., Yardimci, M.Y., Yiğiter, H., Aydin, S., Türkel, S., Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag,Cement and Concrete Composites 32(8) 639–648, (2010).
    107. Yazici, H., Yardimci, M.Y., Aydin, S., Karabulut, A.Ş.,“Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes”, Construction and Building Materials 23(3) 1223–1231, (2009).
    108. M., Yilmaz, K., Sümer, M., Saribiyik, M., Effect of pre-setting pressure applied to mechanical behaviours of reactive powder concrete during setting phase, Construction and Building Materials 25(1) 61–68, (2011).
    109. Collepardi, M., Corinaldesi, V., Monosi, S. and Moriconi, G., DSP Materials Applications and Development Progress, in CMSE/1, Proc.s of the International Conference on‘Composites in Material and Structural Engineering’ ed. M. Cerný, Prague, Czech Republic, , 49–52(2001).
    110. Collepardi, M., Corinaldesi, V., Monosi, S. and Moriconi, G., Applicazioni e sviluppo dei materiali DSP, l'Industria Italiana del Cemento, 777 540–544(2002).
    111. Yang, S.L., Millard, S.G., Soutsos, M.N., Barnett, S.J., Le, T.T., “Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fiber-reinforced concrete (UHPFRC)”, Construction and Building Materials 23(6) 2291–2298,( 2009).
    112.Yazici, H., Yiğiter, H., Karabulut, A.Ş., Baradan, B., “Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete”, Fuel87(12) 2401–2407, (2008).
    113. Van Tuan, N., Ye, G., van Breugel, K., Fraaij, A.L.A., Dai Bui, D., The study of using rice husk ash to produce ultra high performance concrete, Construction and Building Materials,article in press, doi:10.1016/j.conbuildmat..11.046(2010).
    114. 陳豪吉,「廢棄混凝土應用於公路構造物中規範」,行政院交通部報告 (2000).
    115. 王豔、宋少民,「輕集料混凝土」,中國鐵道出版社, (1999).
    116. Rossi, P. ed. R. K. Dhir, P. C. Hewlett, L.J., “Development of new cement composite materials for construction’, in ‘Innovation and Developments in Concrete Materials and Construction” Csetenyi, Thomas Telford Publishing, London, UK, 17–30, (2002).
    117. EN 1015–11, Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar, (1999).
    118.Jahanmir, S., Ramulu, M., Koshy, P., Machining of Ceramics and Composites, Marcel Dekker, New York, (1999).
    119. UNI 7745. Materiali isolanti. Determinazione della conduttività termica con il metodo della piastra calda con anello di guardia. (1977).
    120.Y.C. Kan, K.C. Pei, and C.L. Changa, Strength and fracture toughness of heavy concrete with various iron aggregate inclusions, Nucl. Eng. Des., 228, p.119(2004).
    121J.L. Huang, Concrete Property and Behavior, Chan’s Arch-Publishing Co. Ltd., China Taipei,( 2007).
    122.Y.C. Peng and C.L. Huang, The concrete dense packing mode and engineering properties of aggregate concrete with different densities J. Univ. Sci. Technol. Beijing (in Chinese), 32, No.3, p.366(2010).
    123. D.J. Lin,“ROC Concrete Technology 21st Century Development Program”, Building Research Institute, China Taipei, (2006).
    124.M.I. Khan and H.I. Al-Abdul Wahhab, “Improving slurry seal performance in Eastern Saudi Arabia using steel slag”, Constr. Build. Mater., 12, p.195(1998).
    125.Y.C. Kan, K.C. Pei, and C.L. Chang, Strength and fracture toughness of heavy concrete with various iron aggregate inclusions, Nucl. Eng. Des., 228, p.119(2004).
    126.ACI Committee 221, “Standard Practice for Selecting Proportions for Structural Lightweight Concrete”, American Concrete Institute, (1981).
    127.K. Sakr and E. EL-Hakim, “Effect of high temperature or fire on heavy weight concrete properties”, Cem. Concr. Res., 35, p.590(2005).
    128J.Q. Guo, Z.X. Lei, P.L. Chen, and T.H. Zhou, “Experimental study on ductility and bearing capacity of concrete frame columns with central reinforcement under high axial compression ratio”, J. Build. Struct., 29, p.89(2008).
    129. S. Popovics and J. Ujhelyi, “Contribution to the concrete strength versus water-cement ratio relationship”, J. Mater. Civ. Eng., 20, p.459(2008).
    130.X.H. Vu, Y. Malecot, L. “Daudeville, and E. Buzaud, Experimental analysis of concrete behavior under high confinement: Effect of the saturation ratio”, Int. J. Solids Struct., 46, p.1105(2009).
    131.J. Bai, S. Wild, B.B. Sabir, and J.M. Kinuthia, “Workability of concrete incorporating pulverized fuel ash and metakaolin”, Mag. Concr. Res., 51, p.207(1999).
    132.J. Golaszewski, J. Szwabowski, P. Soltysik, “Influence of air entraining agents on workability of fresh high performance concrete”, [in] Proceedings of the International Conference on Admixtures-Enhancing Concrete Performance, Taipei, , p.171(2005).
    133.Q.Y. Li, Z.W. Wang, and Y.Z. Yang, “Evaluation methods of workability of lightweight aggregate concrete”, J. Harbin Inst. Technol., 37, Suppl. 1, p.253(2005).
    134. J. Punkki, J. Golaszewski, and O.E. Gjorv, Workability loss of high-strength concrete, ACI Mater. J., 93, p.427(1996).
    135.T. Sawamoto and M. Tsuji,“Technique to produce recycled aggregate concrete with crushed concrete waste”, J. Soc. Mater. Sci. Jpn., 49, p.1079(2000).
    136.S.S. Jamkar, and C.B.K. Rao,“Index of aggregate particle shape and texture of coarse aggregate as a parameter for concrete mix proportioning”, Cem. Concr. Res., 34, p.2021(2004).
    137.M.B.D. Hueste, P. Chompreda, D. Trejo, et al., “Mechanical properties of high-strength concrete for prestressed members”, ACI Struct. J., 101, p.457,(2004).
    138. K.K. Choi, A.G. Sherif, M.M. Reda Taha, and L. Chung, “Shear strength of slender reinforced concrete beams without web reinforcemen t”.A model using fuzzy set theory, Eng. Struct., 31, p.768(2009).
    140.Y.C. Kan, K.C. Pei, and C.L. Chang, “Strength and fracture toughness of heavy concrete with various iron aggregate inclusions”, Nucl. Eng. Des., 228, p.119,(2004).
    141.Y.C. Peng and C.L. Huang, “Engineering properties of sintered waste sludge as lightweight aggregate in a densified concrete mixture”, J. Chongqing Univ. (Eng. Ed.), , p.2318(2009).
    142.「水庫淤砂再生一源研究報告」,經濟部水利署 (2002).
    143.J.L. Huang, L.C. Li, Y.Y. Jan, W.C. Yang, and Y.J. Peng,“Sludge Light-weight
    Aggregate-Production and Basic Property Analysis” (2007).
    144.J.C. Yang and J.N. Hsieh, “”Water reservoir sludge research topics planning, Water Reservoir Sustainable Management Research Plan, Achievements Seminar Papers, pp. 36 (1998).
    145.CEB/FIP, “Lightweight Aggregate Concrete”, The Construction Press, pp. 65 (1977).
    146.Sawamoto, Takehiro,Tsuji, Masanori,“Technique to produce recycled aggregate concrete with crushed concrete waste”, Journal of the Society of Materials Science, Japan, v 49, n 10, pp. 1079-1084, Oct (2000).
    147.ACI Committee 221, Standard practice for selecting proportions for structural lightweight concrete (ACI 221.2-81), (1981).
    148.West Findings, “Studies on artificial light-weight aggregate concrete”, (1965).
    149.W.M. Lin and J.Y. Wu, Structural light-weight granular concrete economic assessment, Taiwan Road Engineering, 26, No. 3, pp. 8 (1999).
    150.Roy, D.M., Idorn, G.M.“Hydration, structures, and properties of blast furnace slag cements, mortars, and concrete”. ACI Journal Proceedings, 82:444-457, (1982).
    151.Sakuraya, T. “The Utilizing Condition of Metallugical Slag and Steel Slag for Japanese Refinery Steel Industry”. The International Associate of Metallurgical Slag Recycle and Utilization, Beijing, p.15-20., (1999) .
    152.Schindler, A.K., Barnes, R.W., Roberts, J.B., Rodriguez, S. “Properties of self-consolidating concrete for prestressed members”. ACI Materials Journal, 104(1): 53-61., (2007).
    153.Whitcomb, B.L., Kiousis, P.D.Development of self-consolidating concrete for thin wall applications including validation. Journal of Materials in Civil Engineering, 21(10):587-593. [doi:10.1061/(ASCE)0899-1561 (2009)21:10(587)] , (2009).
    154.Wu, X.Q., Zhu, H., Hou, X.K., Li, H.S.“Study on steel slag and fly ash composite Portland cement”. Cement and Concrete Research, 29(7):1103-1106. [doi:10.1016/ S0008-8846(98)00244-0] , (1999).
    155.Zhang, M.H., Bilodeau, A., Malhotra, V.M., Kim, K.S., Kim, J.C..“Concrete incorporating supplementary cementing materials: effect on compressive strength and resistance to chloride-ion penetration”. ACI Materials Journal, 96:181-189, (1999).
    156.PENG Yu-chu,The Study of Different Unit Weight of Aggregate on the Properties of Concrete,臺灣科技大學碩士論文,(1999).
    157.Malhotra, V. M., “ Making Concrete Greener with Fly Ash – supplementary cementing materials can reduce greenhouse gas into the environment, ” Concrete International, V. 19, No. 5, pp.61-66,(1999)。
    158.林憲德,「熱濕氣候的綠色建築計畫-由生態建築到地球環保」,詹氏書局,臺北,(1996)。
    159.黃莉琳,「鋼鐵業排放CO2之減量潛力分析與評估」,成功大學環境工程研究所碩士論文,(1996)。
    160.楊維修,「水泥業溫室氣體減量潛力分析與評估」,成功大學環境工程研究所碩士論文,(1996)。
    161.蔡昌宏,「稍潔型輕質骨材製程及性質研究」 ,台灣科技大學碩士論文(1988).
    162.李嘉銘,「纖維緻密混凝土工程性質分析」,台灣科技大學碩士論文(1987).
    163.Wang HY, Li LS, Chen SH, et al. “Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing” [J]. Computers and Concrete, 6(3): 225-234, (2009).
    164.Kayali O, Zhu B. “Chloride induced reinforcement corrosion in lightweight aggregate high-strength fly ash concrete” [J]. Construction and Building Materials, 19(4): 327-336, (2005).
    165.Kayali O.“Fly ash lightweight aggregates in high performance concrete” [J]. Construction and Building Materials, 22(12): 2393-2399,( 2008).
    166.Gunning PJ, Hills CD, Carey PJ. “Production of lightweight aggregate from industrial waste and carbon dioxide” [J]. Waste Management, 29(10): 2722-2728, (2009).
    167.Demirdag S, Gunduz L. “Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units” [J]. Construction and Building Materials, 22(3): 135-142, (2008).
    168.Sari D, Pasamehmetoglu AG.“The effects of gradation and admixture on the pumice lightweight aggregate concrete” [J]. Cement and Concrete Research, 35(5): 936-942, (2005).
    169.Peng ,Y.C,. “Study on different unit weight of high performance concrete” [J]. Journal of Beijing University of Science and Technology, 32(3). , (2010 ).
    170.Liou JS. “A study on the flexural properties of lightweight concrete beams” [D]. TAIWAN: Civil Engineering Institute of National Taiwan University, (2007).
    171. Huang SC, Chang FC, Lo SL, et al. “Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash” [J]. Journal of Hazardous Materials, 144: 52-58, (2007).
    172.PENG Yu-chu and C.L.Hwang, “Engineering properties of sintered waste sludge as lightweight aggregate in a densified concrete mixture”, Journal of Chongqing University (English Edition) Vol. 8 No. 4,231~238 ,December 2009.
    173.Y.-C. Kan, K.-C. Pei, C.-L. Changa, “Strength and fracture toughness of heavy concrete with various iron aggregate inclusions”, Nuclear Engineering and Design 228 119–127, (2004).
    174.C.L. Huang, Concrete Property and Behavior, Zan’s Publishing House, 2007.
    175. Huang ,J.L.and Y.J. Peng, “The study of concrete of different unit Weights”, Collected Papers of AIROC, (2006).
    176.D.J. Lin, “ROC Concrete Technology 21st Century Development Program, Preparatory Office”, Building Research Institute, Ministry of Internal Affairs, (2006).
    177.M.I. Khan, H.I. Al-Abdul Wahhab, “Improving slurry seal performance in Eastern Saudi Arabia using steel slag”, Construction and Building Materials ,12 195–201, (1998).
    178.Y.-C. Kan, K.-C. Pei, C.-L. Chang,“Strength and fracture toughness of heavy concrete with various iron aggregate inclusions”, Nuclear Engineering and Design ,228 119–127, (2004).
    179.ACI Committee 221, Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 221.2-81), (1981).
    180.K. Sakr, E. EL-Hakim, “Effect of high temperature or fire on heavy weight concrete properties”, Cement and Concrete Research, 35 590–596, (2005).
    181.Guo, Junqing,Lei, Zixue,Chen,Penglang,Zhou, “Tianhua, Experimental study on ductility and bearing capacity of concrete frame columns with central reinforcement under high axial compression ratio”, Jianzhu Jiegou Xuebao/Journal of Building Structures, , v 29, n 4, p 89-95, August (2008).
    182.Popovics,Sandor,Ujhelyi,Janos,“Contribution to the concrete strength versus water-cement ratio relationship”, Journal of Materials in Civil Engineering, v 20, n 7, p 459-463, July (2008).
    183.Vu, Xuan Hong, Malecot, Yann, “Daudeville, Laurent,Buzaud, Eric, Experimental analysis of concrete behavior under high confinement: Effect of the saturation ratio”, International Journal of Solids and Structures, v 46, n 5, p 1105-1120, March 1,( 2009).
    184.Bai, J. , Wild, S. , Sabir, B.B. , Kinuthia, J.M., “Workability of concrete incorporating pulverized fuel ash and metakaolin”, Magazine of Concrete Research, v 51, n 3, p 207-216, June (1999).
    185.ACI Committee 116, “Cement and Concrete Terminology (ACI 116R-00)” ,
    American Concrete Institute, Farmington Hills, 73 pp, Mich.,(2000).
    186.ACI Committee 207, “Mass Concrete (ACI 207.1R-05),” American Concrete
    Institute, Farmington Hills, Mich., 42 pp, (2005).
    187. Portland Cement Association, Design and Control of Concrete Mixtures, 13th
    Edition, Skokie, Ill., 212 pp, (1988).
    188.Malhotra,V.M.,and P.K. Mehta,High-Performance,High Volume Fly Ash, 2nd Ed.,January (2005)。
    189.Mehta, P.K.,J.M.Montorio,Concrete-Structure,Properties and Materials,Prentice-Hall,(2003)。
    190.Mehta, P.K., S.L. Langley, “Monolith Foundation:Built to Last a 1000 Years”,Concrete International, V.23, No.4, PP.27-32, July (2000)。
    191.Malinowski, R., “Concrete and Mortars in Ancient Aqueducts,” Concrete International, V.1, No.1, Jan, pp.66-76. (1979)。
    192.Lea, F.M., “The Chemistry of Cement and Concrete, Chemical Publishing Co”., 3rd Edition, (1971)。
    193.John Hart and Associates, P.A., “Ancient Cementitious Materials”, Contractor Report, Waste Isolation Pilot Plant, Carlsbad, New Mexico, August 31, (2000)。
    194.Kouli, M. and Ch. Ftikos, “The ancient Kamirian water storage tank:A proof of concrete technology and durability for three millenniums,Vol.31, pp.623-627, November (1998)。
    195.Pieer-Claude Aïtcin,"Cements of yesterday and today,Concrete tomorrow",
    Cement and Concrete Research,20,(2000)。
    196.Malhotra,V.M.,"Making Concrete Green with Fly Ash",Concrete International , pp.61-66May,(1999)。
    197. ACI Committee 116, “Cement and Concrete Terminology (ACI 116R-00),”
    American Concrete Institute, Farmington Hills, Mich., 73 pp,(2000).。
    198.ACI Committee 207, “Mass Concrete (ACI 207.1R-05),” American Concrete
    Institute, Farmington Hills, Mich., 42 pp. , (2005)。
    199.劉娟紅,宋少民,「綠色高性能混凝土技術與工程應用」,中國電力出版社,北京,.1出版(2011)。
    200.行政院公共工程委員會,公共工程飛灰混凝土使用手冊,臺北,1999。
    201.黃兆龍,「蔔作嵐混凝土使用手冊」,財團法人中興工程顧問社出版,科技圖書公司總經銷,(2007)。
    202.湛淵源,「巨積混凝土施工案例介紹與反思(上)(下)」,技師報,第778與779期,台灣省土木技師公會.11.5,(2011)。

    QR CODE