簡易檢索 / 詳目顯示

研究生: 黎毓杰
Yu-jie Li
論文名稱: 立體顯示器觀賞舒適度研究
The Study of Visual Comfort for Stereoscopic Display
指導教授: 陳鴻興
Hung-shing Chen
口試委員: 孫沛立
Pei-li Sun
溫照華
Chao-hua Wen
詹文鑫
Wen-Hsin Chan
林宗翰
C-H Li
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 84
中文關鍵詞: 立體顯示器視覺舒適度
外文關鍵詞: stereoscopic display, visual comfort
相關次數: 點閱:199下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著顯示科技的進步與2009年阿凡達效應影響,3D立體顯示成為了近年來顯示器廠商的發展重點。然而,視覺舒適度與3D內容不普及等問題使立體顯示器德銷售不如預期。因此改善立體顯示器視覺不適的問題成為近年來熱門的研究重點。本篇論文探討了一系列的3D立體顯示器新型應用的視覺舒適度,共設計三個實驗:實驗一探討2D/3D混合內容的視覺舒適度。我們發現在2D/3D混合內容時,除了內容視差範圍影響視覺舒適度,文字長度(短/中/長)和觀看模式(簡單模式/複雜模式)也會影響。實驗二探討3D字幕的視覺舒適度設計。我們發現不同的對焦平面圖片會導致不同的字幕位置。但舒適字幕範圍不會根據不同的對焦平面和影像內容改變。 實驗三調查了3D縮放內容的視覺舒適閾值。我們發現在一定的縮放程度下,舒適區與放大倍率、影像內容或橫向位置無關。


    This study discusses several novel issues of visual comfort on stereoscopic display. The first experiment discussed visual comfort of 2D/3D mixed contents. It found that in addition to content disparity range affects visual comfort, text length (short/middle/long) and viewing mode (simple /complex mode) also have effect when 2D/3D contents were mixed together. The second experiment explored visual comfort design of subtitle in 3D contents. It found that different convergence points cause different visual comfort ranges of tolerated subtitles. But the tolerated visual comfort ranges of the subtitles could be changed according to different convergence points and different image contents. Finally, the third experiment investigated the visual comfortable threshold of scaling 3D content. We found that comfort disparity range will not be changed by magnification ratio, different content or different horizontal positions.

    中文摘要 ABSTRACT Acknowledgement CONTENTS LIST OF FIGURES LIST OF TABLES Chapter 1 Introduction 1.1 Background 1.2 Motivation 1.3 Objectives 1.4 Limitations Chapter 2 Literature review 2.1 Human perception of depth and stereoscopic vision 2.1.1 Ocular information 2.1.2 Pictorial information 2.1.3 Dynamic information 2.1.4 Stereoscopic information 2.2 Stereoscopic display technologies 2.2.1 Stereoscopic display 2.2.2 Autostereoscopic display 2.3 Visual comfort 2.3.1 Excessive binocular disparity 2.3.2 Parallax distribution 2.3.3 Binocular mismatches and crosstalk 2.3.4 Accommodation-Convergence conflict 2.3.5 3D artifacts 2.3.6 Stereoscopic distortions 2.4 Evaluation methods 2.4.1 Subjective assessment methods 2.4.2 Angular disparity calculation Chapter 3 Experiment 1: Visual comfort for complex 2D/3D mixed mode 3.1 Experimental design 3.2 Experimental apparatus and environment 3.3 Task and procedure 3.4 Experimental results and discussion 3.4.1 2D text area 3.4.2 3D picture area 3.4.3 General viewing 3.5 Summary Chapter 4 Experiment 2: TV / Movie: subtitle 4.1 Experimental design 4.2 Experimental apparatus and environment 4.3 Task and procedure 4.4 Experimental results and discussion 4.5 Summary Chapter 5 Experiment 3: Visual comfort for advanced 3D image scaling 5.1 Experimental design 5.2 Experimental apparatus and environment 5.3 Task and procedure 5.4 Experimental results and discussion 5.5 Summary Chapter 6 Conclusions REFERENCE APPENDIX I APPENDIX II

    [1] S. Palmer, Vision Science. MIT Press, Cambridge, Massachusetts, USA (1999).
    [2] Schreiber KM, Hillis JM, Filippini HR, Schor CM, Banks MS., The surface of the empirical horopter. School of Optometry, University of California at Berkeley, CA, USA (2008).
    [3] R. Patterson and W. L. Martin, “Human stereopsis,” Human Factors, vol. 34, pp. 669–692 (1992).
    [4] McAllister, D.F., display technology: Stereo and 3D display technologies (2001).
    [5] Pastor S. and Wopking M., 3D display: a review of current technologies, interperabilly and scalability Fraunhofer (1997).
    [6] Wikipedia website, http://en.wikipedia.org/wiki/Parallax_barrier, accessed 2013 July.
    [7] 華視新聞「阿凡達後遺症,頭暈想吐耳朵痛」, accessed 2010 July.
    http://news.cts.com.tw/cts/society/201001/201001190392746.html
    [8] 今日新聞 「看阿凡達頭暈,男子腦幹出血死亡」, accessed 2010 July.
    http://www.nownews.com/2010/01/19/11490-2560264.htm
    [9] N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Threedimensional displays: Areviewand applications analysis,” IEEE Trans. Broadcast (2011).
    [10] M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, Visual discomfort and visual fatigue of stereoscopic displays: A review, Journal of Imaging Science and Technology, Volume 53, Number 3, pp. 30201-1-30201-14 (2009).
    [11] K. Ukai and P. A. Howarth, “Visual fatigue caused by viewing stereoscopic motion images: Background, theories and observations,” Displays, vol. 29, pp. 106–116 (2008).
    [12] S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays, vol. 23, pp. 191–201 (2002).
    [13] Y. Y. Yeh and L. D. Silverstein, "Limits of fusion and depth judgement in stereoscopic color displays", Human Factors 32: 45-60 (1990).
    [14] Y. Nojiri, H. Yamanoue, A. Hanazato, M. Emoto, and F. Okano, “Visual comfort/discomfort and visual fatigue caused by stereoscopic HDTV viewing,” in Proc. Stereoscopic Displays Virtual Reality Syst. XI, vol. 5291, pp. 303–313 (2004).
    [15] Pei-Li Sun, Tai-Hsiang Tseng,Yi-Lin Chen, Chien-Wen Chen, Ren-Lang Dong, The Comfort Zone and Fusion Limit of a Foreground Object with its Background on a Large Format 3D Display, IDW2012 (2012).
    [16] S. Ide, H. Yamanoue, M. Okui, and F. Okano, “Parallax distribution for ease of viewing in stereoscopic HDTV,” in Proc. Stereoscopic Displays Virtual Reality Syst. IX, vol. 4660, pp. 38–45 (2002).
    [17] Y. Nojiri, H. Yamanoue, A. Hanazato, and F. Okano, “Measurement of parallax distribution and its application to the analysis of visual comfort for stereoscopic HDTV,” in Proc. Stereoscopic Displays Virtual Reality Syst. X, vol. 5006, pp. 195–205 (2003).
    [18] Y. Nojiri, H. Yamanoue, S. Ide, S. Yano, and F. Okana, “Parallax distribution and visual comfort on stereoscopic HDTV,” in Proc. IBC, pp. 373–380 (2006).
    [19] F. Speranza, W. J. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” in Proc. Stereoscopic Displays and Virtual Reality Syst. XIII, vol. 6055, pp. 60550B-1–60550B-9 (2006).
    [20] F. Speranza and L. M. Wilcox, “Viewing stereoscopic images comfortably: The effects of whole-field vertical disparity,” in Proc. Stereoscopic Displays Virtual Reality Syst. IX, vol. 4660, pp. 18–25 (2002).
    [21] Pei-Li Sun, Ting-Yuan Chang and Ronnier M. Luo, Binocular Color-rivalry Thresholds of Complex Images, IDW2012 (2012).
    [22] Y.-Y. Yeh and L. D. Silverstein, “Limits of fuision and depth judgment in stereoscopic color displays,” Human Factors, vol. 32, no. 1, pp. 45–60 (1990).
    [23] P. J. H. Seuntiens, L. M. J. Meesters, and W. A. IJsselsteijn, “Perceptual attributes of crosstalk in 3D images,” Displays, vol. 26, pp. 177–183 (2005).
    [24] Hiroki Hori, Tomoki Shiomi, Keita Uemoto, Masaru Miyao,Accommodation and Convergence during 2D and 3D Images Gaze, IDW2011 (2011).
    [25] Jae-Hyun Jung, Jonghyun Kim, Soon-gi Park, Seo Young Choi, Dongkyung Nam,Byoungho Lee1,Accommodation response of super multi-view display using directional light in monocular condition (2010).
    [26] Tsunehiro Takeda, Keizo Hashimoto, Nobuyuki Hiruma, Yukio Fukui, Characteristics of accommodation toward apparent depth (2012).
    [27] Filippo Speranza*, Lew B. Stelmach, Wa J. Tam, and Ryan Glabb Communications Research Centre Canada, Visual comfort and apparent depth in 3D systems: Effects of camera convergence distance (1999).
    [28] Takashi Shibataa, b, Joohwan Kima, David M. Hoffmana, Martin S. Banks*a, Visual discomfort with stereo displays: Effects of viewing distance and direction of vergence-accommodation conflict (2011).
    [29] Wa James Tam, Liang Zhang, 3D-TV Content Generation: 2D-To-3D Conversion (2006).
    [30] Christoph Fehn, A 3D-TV Approach Using Depth-Image-Based Rendering (DIBR) (2004).
    [31] Chao-Hua Wen, Yen-Hen Lee, Shih-Lung Tsai, Yi-Lin Chen, Chien-Wen Chen, Ren-Lang Dong, Empirical Investigation Based on Depth Cues for 2D-to-3D Conversion Evaluations, IDW2012 (2012)
    [32] L. B. Stelmach, W. J. Tam, F. Speranza, R. Renaud, and T. Martin, “Improving the visual comfort of stereoscopic images,” in Proc. Stereoscopic Displays Virtual Reality Syst. X, vol. 5006, pp. 269–282 (2003).
    [33] Methodology for the Subjective Assessment of the Quality of Television Pictures, ITU-R Recommendation BT.500-11, ITU-R Recommendation website, http://www.itu.int/pub/R-REC, accessed 2013 July.
    [34] Wa James Tam, Human Stereoscopic Vision: Research Applications for 3D-TV, SID 2007 (2007).
    [35] Sachin Deshpande, 3D Comfort and Fusion Limits: Subjective Results Versus Psychovisual Model Predictions, SID 2011 (2011).
    [36] T. Kawai, S. Kishi, T. Yamazoe, T. Shibata, T. Inoue,Y. Sakaguchi, K. Okabe, Y. Kuno, T. Kawamoto,Ergonomic evaluation system for stereoscopic video production, SPIE 2011 (2011).
    [37] Yong Ju Jung, Seong-il Lee, Hosik Sohn, Hyun Wook Park, Yong Man Ro, Visual comfort assessment metric based on salient object motion information in stereoscopic video, SPIE 2012 (2012).
    [38] Juhyun Oh and Kwanghoon Sohn, A Depth-Aware Character Generator for 3DTV, IEEE 2012 (2012).
    [39] S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays, vol. 23, pp. 191–201 (2002).
    [40] Tai-Hsiang Tseng, Pei-Li Sun, Assessing the visual comfort range of a large-size stereoscopic LCD display (2012).
    [41] TOSHIBA product news website: http://www.grainew.com.tw/p1-nb-detail.asp?Pkey=aBUMaB32aBPUaB32aBTJaB38, accessed 2013 July.
    [42] 3D consortium 3DC safety Guidelines committee, 3D consortium stereoscopic safety guidelines and recommendations to popularize 3D images (2004).

    QR CODE