簡易檢索 / 詳目顯示

研究生: 伶香
Pukhrambam - Puspa Devi
論文名稱: Electro-absorption Modulated Lasers with High Immunity to Residual Facet Reflection by Using Lasers with Partially Corrugated Gratings
Electro-absorption Modulated Lasers with High Immunity to Residual Facet Reflection by Using Lasers with Partially Corrugated Gratings
指導教授: 李三良
San Liang Lee
口試委員: 詹裕恆
None
曹恆偉
None
葉秉慧
None
廖顯奎
None
徐世祥
None
Gerd Keiser
Gerd Keiser
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 110
中文關鍵詞: Electro-absorption modulated lasersResidual facet reflectionHigh-speed transmissionLinear gain coefficientPartially-corrugated-grating
外文關鍵詞: Electro-absorption modulated lasers, Residual facet reflection, High-speed transmission, Linear gain coefficient, Partially-corrugated-grating
相關次數: 點閱:247下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

The electro-absorption modulated lasers (EMLs) that are widely used in long-haul high-speed transmission have become attractive as light sources for short- and medium-reach optical connects of data centers and mobile stations. These applications require the optical transceivers to be compact, low-cost, and mass producible. They are also demanding ≥100Gb/s data rates per cable currently and the needed data rate is expected to rise rapidly. But the EML formed of an integrated distributed feedback (DFB) laser and an electro-absorption modulator (EAM) is known to be vulnerable to optical reflection, especially for data rates above 10 Gb/s. Residual facet reflection can significantly degrade the performance of electro-absorption modulated lasers (EMLs) operating at high data rates. This issue also complicates the fabrication and characterization of the highly demanded light sources for optical interconnects and transmission. It is desired to optimize the device structure to make EMLs robust and immune to residual facet reflection.
In this work, we have investigated the effects of the residual facet reflection on the dynamic properties of the EML. We propose to increase the linear gain coefficient of the laser material to improve the immunity to the reflection. Simulation results verify the increase in yield and Q-value by raising the linear gain. We have also numerically verified our statement by proposing a rate equation of a laser under modulated optical feedback for a uniform grating DFB EML structure.
EMLs with a partially-corrugated-grating (PCG) DFB section are designed and optimized to have much improved tolerance to the residual optical reflection from the modulator output facet. By designing the laser section with an appropriate grating length and linear gain coefficient, the EML can have good tolerance to residual facet reflection. The analysis indicates that 100% yield can be obtained with the optimal design. If
the EML needs to operate over a wide ranges of gain coefficient and facet reflection, >70% of yield can still be obtained.


The electro-absorption modulated lasers (EMLs) that are widely used in long-haul high-speed transmission have become attractive as light sources for short- and medium-reach optical connects of data centers and mobile stations. These applications require the optical transceivers to be compact, low-cost, and mass producible. They are also demanding ≥100Gb/s data rates per cable currently and the needed data rate is expected to rise rapidly. But the EML formed of an integrated distributed feedback (DFB) laser and an electro-absorption modulator (EAM) is known to be vulnerable to optical reflection, especially for data rates above 10 Gb/s. Residual facet reflection can significantly degrade the performance of electro-absorption modulated lasers (EMLs) operating at high data rates. This issue also complicates the fabrication and characterization of the highly demanded light sources for optical interconnects and transmission. It is desired to optimize the device structure to make EMLs robust and immune to residual facet reflection.
In this work, we have investigated the effects of the residual facet reflection on the dynamic properties of the EML. We propose to increase the linear gain coefficient of the laser material to improve the immunity to the reflection. Simulation results verify the increase in yield and Q-value by raising the linear gain. We have also numerically verified our statement by proposing a rate equation of a laser under modulated optical feedback for a uniform grating DFB EML structure.
EMLs with a partially-corrugated-grating (PCG) DFB section are designed and optimized to have much improved tolerance to the residual optical reflection from the modulator output facet. By designing the laser section with an appropriate grating length and linear gain coefficient, the EML can have good tolerance to residual facet reflection. The analysis indicates that 100% yield can be obtained with the optimal design. If
the EML needs to operate over a wide ranges of gain coefficient and facet reflection, >70% of yield can still be obtained.

Abstract I ACKNOWLEDGEMENT III GLOSSARY OF TERMS XIII CHAPTER 1 INTRODUCTION 1 1.1 Overview 1 1.2 Introduction of EML 4 1.3 Operational Principle of EML 5 1.3.1 EAM Section 5 1.3.2 Laser Sections 6 1.3.3 Field Induced Absorption 7 1.4 Motivation for the Work 9 1.5 Organization of the Dissertation 12 CHAPTER 2 LITERATURE REVIEW 13 2.1 State of art of Electroabsorption Modulator Division 13 2.1.1 Static Intensity Modulation Performance 13 2.1.2 Dynamic Frequency Modulation Performance 14 2.2 Analysis of Different Laser Structures in EML 16 2.2.1 Overview 16 2.2.2 Standard DFB Laser 17 2.2.3 λ/4 Phase Shifted DFB Laser 19 2.2.4 Partially Corrugated Grating DFB Structure 21 CHAPTER 3 THEORITICAL MODELING OF OPTICAL MODULATED FEEDBACK EFFECT 23 3.1 Laser Under Modulated Optical Feedback 23 3.2 Theoretical Model Description and Analysis 23 3.3 Relative Noise Power Calculation 28 3.3.1 Effect of Linear Gain Coefficient to Noise Power 28 3.3.2 Effect of Confinement Factor to Noise Power 31 CHAPTER 4 DEVICE MODELING WITH TLLM METHOD 34 4.1 Transmission Line Laser Model (TLLM) 34 4.2 Device Modeling 37 4.2.1 Time and Space Discretization 37 4.2.2 Rate Equation Dynamics 38 4.2.3 Laser Gain Model 41 4.2.4 EAM Model 43 4.3 Simulation Setup to Measure the Dynamic Performance 47 4.4 Simulation Setup to Measure Relative Intensity Noise 50 CHAPTER 5 SIMULATION RESULTS AND DISCUSSION 52 5.1 Performance Analysis of EML with Conventional DFB Laser 52 5.1.1 EML with λ /4-shift DFB Structure 53 5.1.2 EML with Uniform Grating DFB Structure 55 5.2 Performance Comparisons between UG and PCG EMLs 59 5.3 RIN Analysis for UG/PCG-DFB EML 62 5.4 Dynamic Performance Analysis of EML with Partially Corrugated Grating (PCG)- DFB Laser 67 5.4.1 Justification of the Modeling Approach 67 5.4.2 Optimization of Gain and Gratings 68 5.4.3 Comparisons for EMLs with Different Laser Lengths 72 5.4.4 Effect of Reflections 74 5.4.5 Effect of Confinement Factor 77 5.5 Discussion 81 CHAPTER 6 CONCLUSION 85 6.1 Future Work 87 References 89

[1]. H. Matsui, S. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55- µm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett., vol. 9, pp. 25-27, 1997.
[2]. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-18, pp. 259-264, 1982.
[3]. T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett., vol. 20, pp. 1038-1040, 1984.
[4]. T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett., vol. 48, pp. 613-615, 1986.
[5]. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers-an overview,” IEEE J. Quantum Electron., vol. QE-23, pp. 9-29, 1987.
[6]. R. A. Linke, "Modulation induced transient chirping in single frequency lasers", IEEE J. Quantum Electron., vol. 21, no. 6, pp. 593-597, 1985.
[7]. T. Ioannis, H. Robert, V. Rich, and B. Aleksandra, “Metro Network Utilizing 10-Gb/s Directly Modulated Lasers and Negative Dispersion Fiber”, IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 408-410, 2002.
[8]. A. Filios, A. Filios, B. Hallock, T. Kennedy, I. Tomkos, M. Vodhanel, and R. Vodhanel, “16 channel, 10 Gb/s DWDM transmission of directly modulated lasers with 100 GHz channel spacing over 100 km of negative dispersion fiber”, in Proceedings of LEOS’01, paper. ThK3, 2001.
[9]. P. Paoletti, M. Meliga, G. Oliveti, M. Puleo, G. Rossi, and L. Senepa, “10 Gbit/s ultra-low chirp 1.55 µm directly modulated hybrid fiber grating – semiconductor laser source”, in Proceedings of ECOC’97, pp. 107- 110, 1997.
[10]. F. N. Timofeev, P. Bayvel, V. Mikhailov, P. Gambini, R. Wyatt, R. Kashyap, and J. E. Midwinter, “Low-chirp, 2.5 Gbit/s directly modulated fiber grating laser for WDM networks”, in Proceedings of OFC’97, paper ThM1, 1997.
[11]. S. Mohrdiek, H. Burkhard and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection”, J. Lightwave Technol., vol. 12, no. 3, pp. 418-442, 1994.
[12]. J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, and M. Minakata, “Low-drive-voltage 40 Gb/s modulator on X-cut LiNbO3 wafer”,
in Proceedings of ECOC’01, paper We.F.3.3, 2001.
[13]. M. Sugiyama, M. Doi, S. Taniguchi, T. Nakazawa, and H. Onaka, “Drive-less 40 Gb/s LiNbO3 modulator with sub-1 V drive voltage”, in Proceedings of OFC’02, paper FB6-1, 2002.
[14]. N. Kiyoshi, W. Hiroshi. “40 Gb/s EA modulator” OKI Technical Review, issue 190, vol. 69, no.2, April 2002.
[15]. N. Mineo, K. Yamada, K. Nakamura, Y. Shibuya, and K. Nagai, “More than 50 GHz bandwidth electro absorption modulator module”, OECC 2000 Technical digest, PD2-7, June 2000.
[16]. H. Kawanishi, T. Suzuki, K. Nakamura, N. Mineo, Y. Shibuya, K. Sasaki, and H. Wada, “1.3 µm EAM-integrated DFB lasers for 40 Gb/s very-short-reach application”, in Proceedings of OFC’03, paper TuP4, March 2003.
[17]. L. Xu, P. Jeppesen, and J. Mrk, Electroabsorption modulators used for all-optical signal processing and labelling, Doctoral dissertation, Technical University of Denmark, 2004.
[18]. Y. Furushima, K. Koji, Y. Muroya, , Y. Sakata, Y. Inomoto, , K. Fukuchi, and M. Yamaguchi, “1560 to 1610 –nm wavelength EA-modulator integrated
DFB-LDs for extended-band 2.5-Gb/s/ch and 10-Gb/s/ch WDM systems”, in
Proceedings of OFC’99, paper WH2, 1999.
[19]. H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, and H. Wada, “Over-40-GHz modulation bandwidth of EAM-integrated DFB laser modules”, in Proceedings of OFC’01, paper MJ3, 2001.
[20]. H. Feng, T. Makino, S. Ogita, H. Maruyama, and M. Kondo, “40 Gb/s electro-absorption modulator integrated DFB laser with optimized design”, in Proceedings of OFC’02, paper WV4, pp. 340-341, 2002.
[21]. W. Kobayashi, T. Yamanaka, M. Arai, N. Fujiwara, T. Fujisawa, K. Tsuzuki, T. Ito, T. Tadokoro, and F. Kano, “Wide Temperature Range Operation of a 1.55-μm 40-Gb/s Electroabsorption Modulator Integrated DFB Laser for Very Short-reach Applications,” IEEE Photon. Technol. Lett., vol. 21, no. 18, pp. 1317–1319, Sep. 2009.
[22]. Y. A. Akulova, C. Schow, A. Karim, S. Nakagawa, P. Kozodoy, G. A. Fish, and D. Pavinski, “Widely-Tunable electroabsorption modulated sampled grating DBR laser integrated with semiconductor optical amplifier”, in Proceedings of OFC’02, paper ThV1, pp. 536-537, 2002.
[23]. A. Ougazzaden, C. W. Lentz, T. G. B. Mason, K. G. Glogovsky, , Reynolds, C. L. G. J. Przybylek, and J. M. Geary, “40 Gb/s tandem electro-absorption modulator”, in Proceedings of OFC’01, paper PD14, 2001.
[24]. K. Prosyk, R. S. Moore, I. Betty, R. Foster, J. E. Greenspan, P. Singh, and P. Langlois, “Low loss, low chirp, low voltage, polarization independent 40
Gb/s bulk electro-absorption modulator module”, in Proceedings of OFC’03,
paper TuP3, 2003.
[25]. M. Kato, T. Reiko, and N. Nakano, “Enlargement of polarization-insensitive operation wavelength range in MQW-EA modulator by tensile strained pre-biased quantum well”, in Proceedings of ECOC’99, pp. 72-73, 1999.
[26]. K. Tsuzuki, Y. Kawaguchi, S. Kondo, Y. Noguchi, N. Yoshimoto, H. Takeuchi, and M. Yanagibashi, “Four-channel arrayed polarization independent EA modulator with an IPF carrier operating at 10 Gb/s”, IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 281-283, 2000.
[27]. M. Shirao, K. Kojima, and H. Itamoto, “53.2 Gb/s NRZ transmission over 10 km using high speed EML for 400GbE”, in Opto-Electronics and Communications Conference (OECC), pp. 1-3, 2015.
[28]. T. Fujisawa, S. Kanazawa, K. Takahata, W. Kobayashi, T. Tadokoro, H. Ishii, and F. Kano, “1.3-μm, 4× 25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter”, Optics Express, vol. 20, no. 1, pp. 614-620, 2012.
[29]. L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits,
John Willey & Sons, New York, 1995
[30]. B. K. Saravanan, Frequency chirping properties of electroabsorption modulators integrated with laser diodes, Doctoral dissertation, Universität Ulm., 2006.
[31]. K. J. Ebeling, Integrated Optoelectronics, Waveguide Optics, Photonics, Semiconductors, Springer Verlag, Berlin, 1993.
[32]. W. Koichi, Semiconductor optical modulators: Kluwer Academic Publishers, New York, 1998.
[33]. T. H. Wood, “Multiple Quantum Well(MQW) Waveguide Modulators”, J. Lightwave Technol., vol. 6, pp. 743-757, 1988.
[34]. W. Franz, and Z. Naturforsch. 13a, 484, 1958.
[35]. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 34, 1138, 1958 [Sov. Phys.- JETP 7, 788, 1958]
[36]. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High-speed optical modulation with GaAs/GaAlAs quantum wells in a p-I-n diode structure”, Appl. Phys. Lett., vol. 44, no. 1, pp. 16-18, 1984.
[37]. D. A. B. Miller, D. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect”, Phys. Rev. Lett., vol. 53, no. 22, 2173, 1984.
[38]. T. Fujisawa, T. Itoh, S. Kanazawa, K. Takahata, Y. Ueda, R. Iga, H. Sanjo, T. Yamanaka, M. Kotoku, and H. Ishii, “Ultracompact 160-Gbit/s transmitter optical subassembly based on 40-Gbit/s× 4 monolithically integrated light source”, Optics Express, vol. 21, no. 1, pp. 182-189, 2013.
[39]. O. K. Kwon, Y. S. Baek, and Y. C. Chung, “Electroabsorption modulated laser with high immunity to residual facet reflection”, ‎IEEE J. Quant. Electron, vol. 48. no. 9, pp. 1203-1213, 2012.
[40]. C. Sun, B. Xiong, J. Wang, P. Cai, J. Xu, Q. Zhou, and Y. Luo, “Influence of residual facet reflection on the eyediagram performance of high-speed electroabsorption modulated lasers”, J. Lightwave Technology, vol. 27, no. 15, pp. 2970-2976, 2009.
[41]. B. K. Kang, S. Y. Cho, J. H. Ahn, J. R. Kim, D. H. Jeon, Y. M. Lee, S. W. Lee, D. H. Jang, and T. I. Kim, “10 Gb/s high power electro-absorption modulated laser monolithically integrated with a semiconductor optical amplifier for transmission over 80 km”, in Proceedings of OFC’O3, paper FO1, 2003,
[42]. J. I. Hashimoto, Y. Nakano, and K. Tada, “Influence of facet reflection on the performance of a DFB laser integrated with an optical amplifier/modulator”, ‎IEEE J. Quant. Electron, vol. 28, no. 3, pp. 594-603, 1992.
[43]. H. Feng, T. Makino, S. Ogita, H. Maruyama, and M. Kondo, “40 Gb/s electro-absorption-modulator-integrated DFB laser with optimized design”, in Tech. Dig. OFC, pp. 340-341, 2002.
[44]. Y. H. Kwon, J. S. Choe, J. S. Sim, S. B. Kim, H. Yun, K. S. Choi, B. S. Choi, and E. S. Nam, “40 Gb/s traveling-wave electro absorption modulator-integrated DFB lasers fabricated using selective area growth”, ETRI Journal, vol. 31, no. 6, pp. 765-769, 2009.
[45]. B. H. Park, I. Kim, B. K. Kang, Y. D. Bae, S. M. Lee, Y. H. Kim, D. H. Jang, and T. I. Kim, “Investigation of optical feedback in high-speed electroabsorption modulated lasers with a window region”, IEEE Photon. Tech. Lett., vol.17, no. 4, pp. 777-779, 2005.
[46]. J. S. Choe, Y. H. Kwon, J. S. Sim, and S. B. Kim, “40 Gbps electroabsorption modulated DFB laser with tilted facet formed by dry etching”, Semicond. Sci. Technol., vol. 22, no. 7, p. 802, 2007.
[47]. Y. H. Kwon, J. S. Choe, J. S. Sim, S. B. Kim, H. Yun, and K. S. Choi, "High-frequency characteristics of 40Gb/s electroabsorption modulator-integrated DFB lasers: effect of traveling-wave electrode and tilted facet", in Proceedings of APMC, pp. 1-4, 2007.
[48]. M. Aoki, S. Takashima, Y. Fujiwara, and S. Aoki, “New transmission simulation of EA-modulator integrated DFB lasers considering the facet reflection-induced chirp”, IEEE Photon. Tech. Lett., vol. 9, no. 3, pp. 380-382. 1997.
[49]. R. A. Salvatore, and R. T. Sahara, “Reduction in reflection-induced chirp from photonic integrated sources”, IEEE Photon. Tech. Lett., vol. 14, no. 12, pp. 1662-1664, 2002.
[50]. F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-reliable and high-speed 1.3 μm complexcoupled distributed feedback buried-heterostructure laser diodes with Fe-doped InGaAsP/InP hybrid grating layers grown by MOCVD”, IEEE Trans. Electron Dev., vol. 55, no. 2, pp. 540-546, 2008.
[51]. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, and H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers” IEEE J. Quant. Electron, vol. 23, no. 6, pp. 804-814, 1987.
[52]. J. Buus, “Mode selectivity in DFB lasers with cleaved facets”, Electronics Letters, vol. 5, no. 21, pp. 179-180, 1985.
[53]. M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, and K. Yoshiara, “Highly external optical feedback-tolerant 1.49-m single-mode lasers with partially corrugated gratings”, ‎IEEE J. Sel. Top. Qua. vol. 15, no. 3, pp. 612-617, 2009.
[54]. H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, and H. Wada, "EAM-integrated DFB laser modules with more than 40-GHz bandwidth," IEEE Photon. Tech. Lett., vol. 14, pp. 954- 956, 2001.
[55]. Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, and H. Takeuchi, "Wide bandwidth of over 50 GHz traveling-wave electrode electroabsorption modulator integrated DFB lasers," IEE Electron. Lett., vol. 37, pp. 299-300, 2001.
[56]. Y. H. Kwon, J. S. Choe, J. S. Sim, S. B. Kim, H. Yun, K. S. Choi, B. S. Choi, and E. S. Nam, “40 Gb/s traveling-wave electro absorption modulator-integrated DFB lasers fabricated using selective area growth,” ETRI J., vol. 31, no. 6, pp. 765–769, Dec. 2009.
[57]. G. P. Agrawal, N. K. Dutta, Semiconductor laser, 2nd ed. Van Nostrand Reinhold, New York, 1993.
[58]. T. Erdogan, “Fiber grating spectra.”, J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, 1997.
[59]. M. Geert, V. Patrick, Handbook of Distributed Feedback Laser Diodes, 2nd ed. Artech House Inc., Norwood, 2013.
[60]. G. P. Agrawal, Fiber-Optic Communication Systems, 3nd ed. John Wiley & Sons, Inc., New York, 2002.
[61]. Pan, Yue, Xi. Yanping, and Li. Xun. "Detuned grating single-mode laser with high immunity to external optical feedback”, IEEE Photonics J, vol. 7, no. 6, pp. 1-13, 2015.
[62]. F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, L. J Lafragette, and L. Silvestre, "Coherence-collapse threshold of 1.3-μm semiconductor DFB lasers", IEEE Photon. Technol. Lett., vol. 15, no.1, pp. 9-11., 2003
[63]. Y. Huang, T. Okuda, K. Shiba, and T. Torikai, "High-yield external optical feedback resistant partially corrugated waveguide laser diodes", IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 435-441, 1999.
[64]. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment”, IEEE J. Quant. Electron, vol. 28, no. 1, pp. 93-108, 1992.
[65]. R. J. Jones, P. S. Spencer, J. Lawrence, and D. M. Kane, “Influence of external cavity length on the coherence collapse regime in laser diodes subject to optical feedback”, IEE Pro.-Optoelectron., vol. 148, no. 1, pp. 7-12, 2001.
[66]. J. Helms, and K. Petermann. “Microwave modulation of laser diodes with optical feedback”, J. Lightw. Technol., vol. 9, no. 4, pp. 468-476, 1991.
[67]. K. E. Lau, H. K. Sung, and C. Wu. Ming. "Frequency response enhancement of optical injection-locked lasers", IEEE J. Quant. Electron, vol. 44, no. 1, pp. 90-99, 2008.
[68]. R. Lang, and K. Kohroh, "External optical feedback effects on semiconductor injection laser properties", IEEE J. Quant. Electron, vol. 16, no. 3, pp. 347-355, 1980.
[69]. F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers”, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, pp. 1900812-1900812, 2013.
[70]. K.I Kallimani, and M. J. O. Mahony. "Relative intensity noise for laser diodes with arbitrary amounts of optical feedback", IEEE J. Quant. Electron, vol. 34, no. 8, pp. 1438-1446, 1998.
[71]. B. J. Tromborg, and M. Jesper, "Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers", IEEE J. Quant. Electron,, vol. 26, no. 4, pp. 642-654, 1990.
[72]. J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki. “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 mu m InGaAs/InGaAsP MQW and strained-MQW lasers”, IEEE Photon. Technol. Lett, vol. 3, no. 9, pp. 773-776, 1991.
[73]. P.B. Johns, and L. B. Raymond, "Numerical solution of 2-dimensional scattering problems using a transmission-line matrix", Electrical Engineers, Proceedings of the Institution of, vol. 118, no. 9, pp. 1203-1208, 1971.
[74]. “VPIcomponentMaker 8.5 Active Photonics User’s Manual”, VPIsystems Inc., 2010
[75]. P. B. Johns, and L. B. Raymond, "Numerical solution of 2-dimensional scattering problems using a transmission-line matrix", Electrical Engineers, Proceedings of the Institution, vol. 118, no. 9, pp. 1203-1208, 1971.
[76]. A. J. Lowery, “New dynamic multimode model for external cavity semiconductor lasers”, IEE Pro.-Optoelectron., vol. 136, no. 4, pp. 229-237, 1989.
[77]. A. J. Lowery, "New dynamic semiconductor laser model based on the transmission-line modelling method", IEE Pro.-Optoelectron., vol. 134, no. 5, pp. 281-289, 1987.
[78]. W. Jr. Hoefer, "The transmission-line matrix method-theory and applications", IEEE Trans. Microw. Theory Techn., vol. 33, no. 10, pp. 882-893, 1985.
[79]. I. Aldaya, G. Campuzano, and G. Castañón, “Analysis of the modulation impairments in optical sideband injection locking for millimeter-wave signal generation’, Opt Laser Technol, vol. 56, pp.167-176, 2014.
[80]. A. J. Lowery, “New dynamic multimode model for external cavity semiconductor lasers”, IEE Pro.-Optoelectron., vol. 136, no. 4, pp. 229-237, 1989.
[81]. G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry-Perot semiconductor lasers”, IEEE J. Quant. Electron, vol. 31, no. 10, pp. 1835-1840, 1995.
[82]. L. Hairong, H. Ghafouri-Shiraz, “Applications of the transmission line laser model in analysis of multiple-phase-shift DFB lasers”, Microw. Opt. Technol. Lett., vol. 40, pp. 51–57, 2003.
[83]. C. A. Stolz, D. Labukhin, N. A. Zakhleniuk, M. J. Adams, “Locking bandwidth of optically injected Fabry–Perot semiconductor lasers for high injection strengths”’ IET Optoelectronics, vol. 2, pp. 223–230, 2008.
[84]. I. Aldaya, G. Campuzano, and G. Castañón, “Analysis of the modulation impairments in optical sideband injection locking for millimeter-wave signal generation”, Optics & Laser Technology, vol. 56, pp.167-176, 2014.
[85]. C. Arellano, S. Mingaleev, A. Novitsky, I. Koltchanov, and A. Richter, “Design of complex semiconductor integrated structures”, in Asia Communications and Photonics conference and Exhibition, (ACP), pp. 1-8, 2009.
[86].
[87].
[88]. L. Goldberg, H.F. Taylor, A. Dandridge, J.F. Weller, and R.O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback”, IEEE Trans. Microw. Theory Techn., vol. 30, no. 4, pp. 401-410. 1982.
[89]. O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback”, Electron Lett., vol. 17, no. 17, pp. 589-591. 1981
[90]. K. Manoj, H. Yiping, and H. Macomber, “High efficiency partial distributed Feedback (P-DFB) laser”, U.S. Patent 7586 970 B2, Sep. 8, 2009
[91]. E.K. Lau, H.K. Sung, and M.C. Wu, “Ultra-high, 72 GHz resonance frequency and 44 GHz bandwidth of injectionlocked 1.55-µm DFB lasers”, in Proceedings of OFC’06, paper OThG2, 2006,
[92]. L. Chrostowski, X. Zhao, C.J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M.C. Amann, “50-GHz Optically InjectionLocked 1.55-mm VCSELs”, IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 367-369, 2006.
[93]. Y. Matsui, T. Pham, W. Ling, R. Schatz, G. Carey, H. Daghighian, and C. Roxlo, “55-GHz Bandwidth Short-Cavity Distributed Reflector Laser and its Application to 112-Gb/s PAM-4.’, in Proceedings of OFC’06, paper Th5B-4, 2006.
[94]. P. Bardella, and I. Montrosset. "A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth." EEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, pp. 1502408-1502408, 2013.

QR CODE