簡易檢索 / 詳目顯示

研究生: 謝榮德
Jung-Te Hsieh
論文名稱: 奈米菌晶製程與分析
Bacterially Induced Nanocrystallization and its Analysis
指導教授: 林保宏
Pao-hung Lin
口試委員: 李奎毅
Kuei-yi Lee
蘇忠傑
Jung-chieh Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 32
中文關鍵詞: 去硝化菌螢光粉植物燈
外文關鍵詞: denitrification bacteria, phosphor, plant growth lighting
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米材料其分子狀態的特性有別於塊狀物質,因而過去二十年來成為顯學。奈米材料就組成成分來說,包括了金屬態、半導體、硫族化物及氧化物。氧化物奈米材料的氣相製備,往往需要高溫的氧化爐(400℃~1000℃),而氧化物奈米材料的液相製備,水熱法、溶膠凝膠法與微乳液法亦各有優缺點。有些製程需要高溫高壓,有些有毒,有些不形成晶體,有些沒法簡單放大擴產。有鑑於上列製備法的缺點,我們提出一種水溶液製程,可以在常溫常壓下無毒地製成奈米晶體,容易簡單放大並且滿足擴產的需求。本研究實驗採用去硝化菌,係由黃胤唐老師從台南魚塭的白蝦腸子中取出單株。此菌經16s rRNA的基因定序確定菌種,且經人致病因子過濾確定其並無致病性。在植物燈的應用上,如能開發出具生產高通量700 nm的螢光粉,再透過已商業化的GaN等UV-LED光源來激發,應該能對具高產值非綠色作物的綠色農業做出貢獻。


    Nanomaterials, under intense research during the past two decades, may be composed of metals, semiconductors, chalcogenides, or oxides—the last being the focus of the present study. The vapor deposition processes of oxide materials require high temperatures, from 400℃ to 1000℃. The liquid phase processes of oxide nanomaterials, like the hydrothermal method, the sol-gel method and the microemulsion method, have their pros and cons as well. In this thesis, we put forward an aqueous process that can fabricate nanostructured crystal materials under ambient condition. It is harmless to humans and easily mass-produced.We employed the denitrification bacteria extracted from the intestines of whiteleg shrimps (Litopenaeus vannamei), grown on an aquatic farm in the south of Taiwan. The strain is identified via the 16s rRNA gene sequence. It is not pathogenic—filtered via the human pathogenic gene test.In the application of plant growth lighting, if the efficiency of the phosphate material is significant increased in 700 nm, we can, with the recently developed GaN UV-LED, produce the deep-red light that is intense enough to be of great help to green agriculture in boosting the production of non-green crops

    中文摘要 --------------------------------------------------------- I 英文摘要 --------------------------------------------------------- II 誌謝 ------------------------------------------------------------- III 目錄 ------------------------------------------------------------- IV 圖索引 ----------------------------------------------------------- V 表索引 ----------------------------------------------------------- VI 第一章、研究動機與方法 ------------------------------------------- 1 第二章、奈米材料製程 --------------------------------------------- 2 2.1沈澱法 -------------------------------------------------------- 3 2.1.1共沈澱法 ---------------------------------------------------- 3 2.1.2均勻沉澱法 -------------------------------------------------- 3 2.1.3多元醇為介質的沉澱法 ---------------------------------------- 3 2.1.4沉澱轉化法 -------------------------------------------------- 4 2.2水熱法 -------------------------------------------------------- 4 2.3溶膠-凝膠法 --------------------------------------------------- 4 2.3.1水解反應 ---------------------------------------------------- 5 2.3.2縮聚反應 ---------------------------------------------------- 5 2.4微乳液法 ------------------------------------------------------ 6 2.5傳統奈米材料製程比較 ------------------------------------------ 7 第三章、去硝化菌希瓦氏菌 ----------------------------------------- 8 3.1希瓦氏菌的來源 ------------------------------------------------ 8 3.2希瓦氏菌還原力的回顧 ------------------------------------------ 9 3.3希瓦氏菌還原力與金屬酸鹽 -------------------------------------- 10 第四章、還原製備法 ----------------------------------------------- 12 4.1還原製備法介紹 ------------------------------------------------ 12 4.2還原製備法可能製備之材料與其應用方向 -------------------------- 15 第五章、實驗方法與結果 ------------------------------------------- 19 5.1實驗方法 ------------------------------------------------------ 19 5.2實驗結果 ------------------------------------------------------ 25 第六章、結論與建議 ----------------------------------------------- 29 參考文獻 --------------------------------------------------------- 30

    [1] Shewan, J. M. (1977). The bacteriology of fresh and spoiling fish and the biochemical changes induced by bacterial action. In Proceedings of the Conference on Handling, Processing and Marketing of Tropical Fish, pp. 51-66. London: Tropical Products Institute.
    [2] Fonnesbech-Vogel, B., Jorgensen, K., Christensen, H., Olsen, J. E. & Gram, L. (1997). Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16s rRNA gene sequence analysis. Appl Environ Microbiol. 63, 2189-2199.
    [3] Brink, A. J., van Straten, A. & van Rensburg, A. J. (1995). Shewanella (Pseudomonas)putrefaciens bacteremia. Clin Infect Dis 20, 1327-1332.
    [4] Semple, K. M. & Westlake, D. W. 5. (1987). Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol. 35, 925-93 1.
    [5] Petrovskis, E. A., Vogel, T. M. & Adriaens, P. (1994). Effects of electron acceptors and donors on transformation of tetra- chloromethane by Shewanella putrefaciens MR-1. FEMS Microbiol. Lett. 121, 357-3 64.
    [6] Venkateswaran, K., and Dollhopf, M. (1998). Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int. J. Syst. Bacteriol. 48, 965–972.
    [7] Myers, C. R. & Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319-1321.
    [8] Kostka, 1. E., Stucki, 1. W., Nealson, K. H. & Wu, J. (1996). Reduction of structural Fe(II1) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays and Clay Minerals 44,522-529.
    [9] Lovely, D. R. & Phillips, E. J. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 51, 683-689.
    [10] Moser, D. P. & Nealson, K. H. (1996). Growth of the facultative anaerobe Shewanellaputrefaciens by elemental sulfur reduction. Appl Environ Microbiol. 62, 2100-2 105.
    [11] Myers, C. R. & Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319-1321.
    [12] Nealson, K. H. & Saffarini, D. (1994). Iron and manganese anaerobic respiration. Annu Rev Microbiol. 48, 311-343.
    [13] Venkateswaran, K., Moser, D. P., Dollhopf, M. E., Lies, D. P., Saffarini, D. A., MacGregor, B. J., ... & Burghardt, J. (1999). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. International journal of systematic bacteriology, 49(2), 705-724.
    [14] Fredrickson, J. K., Romine, M. F., Beliaev, A. S., Auchtung, J. M., Driscoll, M. E., Gardner, T. S., et al. (2008). Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592–603.
    [15] Viamajala, S., Peyton, B. M., Sani, R. K., Apel, W. A., and Petersen, J. N. (2004). Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnol. Prog. 20, 87–95.
    [16] Saltikov, C. W., Wildman, R. A., and Newman, D. K. (2005). Expression dynam- ics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J. Bacteriol. 187, 7390–7396.
    [17] Zhao, J., Manno, D., Beaulieu, C., Paquet, L., and Hawari, J. (2005). Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5- triazine-degrading bacterium from marine sediment. Int. J. Syst. Evol. Microbiol. 55, 1511–1520.
    [18] Gao, H., Obraztova, A., Stewart, N., Popa, R., Fredrickson, J. K., Tiedje, J. M., et al. (2006). Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int. J. Syst. Evol. Microbiol. 56, 1911–1916.
    [19] Brettar, I., Christen, R., and Hofle, M. G. (2002). Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int. J. Syst. Evol. Microbiol. 52, 2211–2217.
    [20] Strous, M., and Jetten, M. S. (2004). Anaerobic oxidation of methane and ammo- nium. Annu. Rev. Microbiol. 58, 99–117.
    [21] Huang, M., & Wang, Y. (2012). Synthesis of calcium phosphate microcapsules using yeast-based biotemplate. Journal of Materials Chemistry, 22(2), 626-630.
    [22] James K. Fredrickson, Margaret F. Romine, Alexander S. Beliaev, Jennifer M. Auchtung, Michael E. Driscoll, Timothy S. Gardner, Kenneth H. Nealson, Andrei L. Osterman, Grigoriy Pinchuk, Jennifer L. Reed, Dmitry A. Rodionov, Jorge L. M. Rodrigues, Daad A. Saffarini, Margrethe H. Serres, Alfred M. Spormann, Igor B. Zhulin & James M. Tiedje (August 2008) Towards environmental systems biology of Shewanella, Nature Reviews Microbiol. 6, 592-603
    [23] 蔡維如 (2015)希瓦氏菌降解亞硝酸機制之研究 國立高雄海洋科技大學 碩士論文.
    [24] Song, Y. P., Zhang, H. Z., Lin, C., Zhu, Y. W., Li, G. H., Yang, F. H., & Yu, D. P. (2004). Luminescence emission originating from nitrogen doping of β? Ga 2 O 3 nanowires. Physical Review B, 69(7), 075304.
    [25] Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental materials, 24(3), 299-307.
    [26] Lombardi Jr, A. V., Berend, K. R., Seng, B. E., Clarke, I. C., & Adams, J. B. (2010). Delta ceramic-on-alumina ceramic articulation in primary THA: prospective, randomized FDA-IDE study and retrieval analysis. Clinical Orthopaedics and Related Research, 468(2), 367-374.
    [27] Kato, E., Hirano, M., Kobayashi, Y., Asoh, K., Mori, M., & Nakata, M. (1996). Preparation of monodisperse zirconia particles by thermal hydrolysis in highly concentrated solutions. Journal of the American Ceramic Society, 79(4), 972-976.
    [28] Wang, L., Z.L. Zhang, R. Cui and H.H. Liu. (2010). Dynamic tracking of single cell synthesis of CdSe quantum dots with a microflufidic device. Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, October 3-7, Groningen, Netherlands, pp: 1868-1870..
    [29] Tam, K., Ho, C. T., Lee, J. H., Lai, M., Chang, C. H., Rheem, Y., Chen, W., Hur, H. G., Myung, N. V. (2010). Growth mechanism of amorphous selenium nanoparticles synthesized by Shewanella sp. HN-41. Bioscience, biotechnology, and biochemistry, 74(4), 696-700.
    [30] S. De Corte, T. Hennebel, S. Verschuere, C. Cuvelier, W. Verstraete, N. Boon. (2011). Gold nanoparticle formation using Shewanella oneidensis: a fast biosorption and slow reduction process. J. Chem. Technol. Biotechnol., 86, 547–553.

    無法下載圖示 全文公開日期 2021/03/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE