簡易檢索 / 詳目顯示

研究生: Mohan Lal Meena
Mohan Lal Meena
論文名稱: 磷酸鹽基材用於照明和光催化劑應用: 合成和表徵
Phosphate based materials for lighting and photocatalyst applications: synthesis and characterization
指導教授: 林昇佃
Shawn D. Lin
呂宗昕
Chung-Hsin Lu
口試委員: 林昇佃
Shawn D. Lin
江志強
Jyh-Chiang Jiang
胡哲嘉
Chechia Hu
呂宗昕
Chung-Hsin Lu
林皓武
Hao-Wu Lin
丘德威
Te-Wei Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 190
外文關鍵詞: Single host white light, Eu3+ phosphor, Judd-Ofelt theory
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷酸鹽基材料具有低水溶性、高化學穩定性、高熱穩定性、優異的電荷穩定性、易於以稀土及過渡金屬摻雜、和成本效益高等優點,適合做為製造磷光體/光催化材料的主體。磷酸鹽基材料具有四面體 3-D 矩陣的多樣化結構,因而可作為優異的電荷穩定結構,增加其應用的各種可能性。 此外,通過摻入其他離子和提供廣泛的晶體場環境可以微調此材料的物理及化學性質,以開發用於照明和光催化劑應用的新型材料。本論文研究旨在通過摻雜調整磷酸鹽基材料,並將其應用於UV/NUV 激發之發光體,用於照明和光催化劑應用。
    為了提升材料於UV/NUV 區域的吸收,本研究合成並分析Na2Ca1-x-yCexMnyP2O7、Na2Ca1-xEuxP2O7和 NaCa1-xEux(PO3)3 磷酸鹽材料。這些材料在UV至可見光區具有明顯的激發帶。通過選擇不同的主體晶體和摻雜離子來調整材料,可以滿足此材料在照明和光催化應用標準。本研究對摻雜濃度、激發機制、能量轉移、濃度猝滅、熱穩定性和主晶格等因素進行完整檢測,以了解合成磷酸鹽材料的發光特性。
    在第一部分工作中,以Na2CaP2O7焦磷酸鹽材料摻雜Ce3+和Mn2+離子作為單相白光螢光粉。在 365 nm 紫外光照射下,摻雜Ce3+ 離子之Na2CaP2O7產生典型的藍色發射不對稱帶,波長位於 415 nm 左右,肩峰在 455 nm 左右。為了獲得白光,再以Mn2+離子摻雜Na2CaP2O7磷酸鹽材料。當 Na2CaP2O7 主體中 Mn2+濃度升高時,對應於Mn2+躍遷的 560 nm 峰的發射強度變強,且位於415 nm 的 Ce3+ 發射隨之變弱。隨著Mn2+濃度的增加,Ce3+相關強度的降低和Mn2+相關強度的相應增加,表明從 Ce3+到Mn2+ 離子的有效能量轉移的可能性。因此Ce3+的藍色發射和Mn2+的橙紅色發射混合在一起從單一主體提供白光,同時具有高活化能值和低熱猝滅行為,使磷酸鹽基螢光粉適用於白光LED。
    在第二部分工作中,開發紅色發光螢光粉以提高第一部分中Na2CaP2O焦磷酸鹽材料發出的白光的顏色品質。在 NUV 照射下,Na2Ca1-xEuxP2O7 螢光粉產生Eu3+ 離子f-f 躍遷的發射特徵。為確認 Eu3+ 離子的局部對稱特性,使用JO 理論計算光學躍遷參數。為深入探討了熱穩定性,Na2Ca1-xEuxP2O7螢光粉在 423 K 時表現出顯著的熱穩定性 (90.63%),測得的活化能為0.26 eV。此外,Na2Ca1-xP2O7:xEu3+ 螢光粉可以與商用綠-藍光螢光粉混合並塗在NUV晶片上以製造白光LED。
    第三部分工作為提高紅光發射效率,利用成分三元相圖合成具有紅光發射的銪離子摻雜磷酸鹽螢光粉。所製備的磷酸鹽材料在612 nm附近表現出源自Eu3+f-f躍遷的窄紅光發射。比較不同主體材料,以NaCa(PO3)3 主體表現出最高的發射強度。通過改變Eu3+濃度研究濃度猝滅過程,顯示猝滅受偶極-偶極相互作用控制。 熱穩定性 (90.17%) 顯示與結構剛度有關,如同通過鍵長扭曲指數評估的結果,研究並利用 Judd-Ofelt (JO) 理論研究NaCa(PO3)3磷酸鹽材料中銪離子附近的局部周圍環境。
    第三部分工作驗證離子摻雜磷酸鹽材料的光催化應用,摻雜RE的Na2Ca1-xEuxP2O7 磷酸鹽材料在紫外到可見光(~300-530nm)範圍內產生吸收,主峰在 394 nm 左右,Na2Ca1-xEuxP2O7在570-700 nm 範圍內觀察到發射峰,這使得所製備的材料成為潛在的光催化劑。將 Eu3+插入主體中會在禁區內產生多個亞穩態,從而導致光刺激過程的增強,結果表明Na2Ca1-xEuxP2O7 基質不僅可以充當可見光吸收中心,還可以通過為電子或空穴產生新的trapping pool,為光生載流子提供足夠的複合時間,從而增加電荷分離,促進光生載流子的複合以及光催化反應。此種可見光驅動的反應,以水作為可持續氫源,將環境污染物尿素作為電洞捕獲劑,Eu3+摻雜的Na2CaP2O7 磷光體作為光催化劑,能選擇性地將芳香族羧酸轉化為醛。本研究通過光催化處理富含尿素的廢水,以太陽能驅動製備高附加價值之化學品,提供一條轉廢為寶的途徑。


    Phosphate based materials are regarded as a suitable host for the manufacture of phosphor/photocatalytic materials because they possess advantages such as ease of preparation with incorporation of RE (rare earth) / TM (transition metal) dopants, low solubility in water, high chemical and thermal stabilities, excellent charge stabilization, and cost-effectiveness. The diverse structure of phosphate-based materials, which has the tetrahedral 3-D matrix, acts as an optimal charge stabilization structure can open up various possibilities for different applications. Besides, their physical/chemical properties can be fine-tuned by incorporating foreign ions and providing extensive crystal field environments to develop novel materials for lighting and photocatalyst applications. This dissertation study aims to tune phosphate-based materials by doping and use it as UV/NUV pumped phosphor for lighting and photocatalyst applications.
    For attaining phosphates with strong absorption in UV/NUV region, Na2Ca1-x-yCexMnyP2O7, Na2Ca1-xEuxP2O7, and NaCa1-xEux(PO3)3 phosphate materials are synthesized and characterized in this study. These materials exhibit significant excitation bands in the UV to visible region. The materials can be tuned by selecting different host crystals and dopants to fulfill their criteria for lighting and photocatalytic applications. The factors such as doping concentration, excitation mechanism, energy transfer, concentration quenching, thermal stability, and host lattice were all examined to understand the luminous characteristics of the synthesized phosphate materials.
    In the first part, Na2CaP2O7 pyrophosphate materials were doped with Ce3+ and Mn2+ ions for single phase white emitting phosphors. Under 365 nm UV light irradiation, the addition of Ce3+ ion in the Na2CaP2O7 host revealed an asymmetric band with the typical blue emission around 415 nm and a shoulder around 455 nm. To obtain white light, the Mn2+ ion was supplementarily substituted to the Na2CaP2O7 phosphate materials. When the Mn2+ concentration was elevated in the Na2CaP2O7 host, the emission intensity of 560 nm peak corresponding to Mn2+ transition enhanced significantly at the cost of Ce3+ emission of 415 nm. The systematic decrease of Ce3+ intensity and the corresponding increase in the Mn2+ intensity with the increase in Mn2+ concentration indicated the possibility of effective energy transfer from Ce3+ to Mn2+ ions. As a result, the blue emission from Ce3+ and the orange red emission of Mn2+ are mixed to provide white light from a single host along with high value of activation energy and low thermal quenching behavior, making phosphate based phosphors to be suitable for wLEDs.
    In the second part, red light emitting phosphors are developed to enhance the color quality of the emitted white light from Na2CaP2O7 pyrophosphate materials in the first part. Under NUV irradiation, the Na2Ca1-xEuxP2O7 phosphors generate the characteristic Eu3+ ion emissions associated with the f-f transitions. To confirm the Eu3+ ion's local symmetry characteristics, the optical transition parameters are calculated using the JO theory. Furthermore, the thermal stability is explored in depth and the prepared Na2Ca1-xEuxP2O7 phosphors demonstrate remarkable thermal stability (90.63 %) at 423 K, with a measured activation energy of 0.26 eV. Moreover, the Na2Ca1-xP2O7:xEu3+ phosphors can be mixed with commercial green-blue emitting phosphors and coated over a NUV chip to fabricate wLED.
    In the third part, to enhance the efficacy of red-light emission, Europium ion doped phosphate phosphors with acute red-light emission are synthesized using a compositional ternary phase diagram. The prepared phosphate materials demonstrated narrow red light emissions around 612 nm, originated by Eu3+ f-f transitions. Among various host materials, NaCa(PO3)3 host showed the highest intensity. The concentration quenching process was studied by varying the Eu3+ concentration, and the quenching was governed by dipole-dipole interaction. Thermal stability (90.17 %) was shown to be related to structural rigidity as evaluated by the bond length distortion index. In addition, the Judd-Ofelt (JO) theory was used to examine the local surrounding environment near the europium ion in the NaCa(PO3)3 phosphate material.
    RE-doped Na2Ca1-xEuxP2O7 phosphate materials resulted in absorbance in UV to visible light (~300- 530 nm) range with a dominant peak at around 394 nm and the emission peaks of Na2Ca1-xEuxP2O7 are observed in 570- 700 nm range. This makes the prepared materials a potential photocatalyst in the final chapter. The insertion of Eu3+ into the present host creates several metastable states inside the forbidden region and thereby led to the enhancement of the photostimulation process. The results reveal that Na2Ca1-xEuxP2O7 matrix not only can act as visible-light absorption centres, but also provide sufficient recombination time of the photo-generated charge carriers by generating new trapping pool for electrons or holes, which increases the charge separation and promotes the photocatalytic reaction. Thus, a visible-light driven one-step protocol to selectively convert aromatic carboxylic acids to aldehydes with water as the sustainable hydrogen source, environmental pollutant urea as a hole scavenger and Eu3+ doped Na2CaP2O7 phosphor as a viable photocatalyst. The present work provides a waste-to-value route for solar energy driven preparation of valuable fine chemicals by simultaneous photocatalytic treatment of urea-rich wastewater.

    Abstract (Chinese) ………………………………………………………....... i Abstract (English) ………………………………………………………….. iii Acknowledgement…………………………………………………………... vi Table of content……………………………………………………………… vii List of Figures………………………………………………………………... xi List of Table………………………………………………………………….. xvii List of Scheme………………………………………………………………… xviii List of Abbreviations………………………………………………………….. xix Chapter 1: Introduction………………………………………………………… 1 1.1 Introduction and background of SSL ……………………………………… 1 1.2. Phosphors…………………………………………………………………. 4 1.3 Effects of transition metal ions in phosphors……………………………… 5 1.4. Role of RE ions……………………………………………………………. 8 1.4.1 f-f transition……………………………………………………………… 11 1.4.2 4f-5d transitions………………………………………………………….. 12 1.5. Phosphate based phosphor materials………………………………………. 12 1.6. Phosphor materials for the photocatalytic applications……………………. 21 1.7 Motivation and aim of the present thesis work……………………………... 24 Chapter 2: Experimental methods……………………………………………… 26 2.1 The preparation and characterization of phosphors for light emitting diodes 26 2.1.1 Synthesis of Na2Ca1-x-yCexMnyP2O7 phosphors…………………………... 26 2.1.2 Synthesis of NaCa1-xEux(PO3)3 phosphors………………………………... 26 2.1.3 Synthesis of Na2Ca1-xEuxP2O7 phosphor materials……………………….. 26 2.1.4 characterization of phosphors…………………………………………….. 27 2.2 The preparation and characterization of materials for photocatalytic application……………………………………………………………………… 27 2.2.1 General…………………………………………………………………... 27 2.2.2 Catalyst Preparation……………………………………………………… 27 2.2.3 Characterization………………………………………………………….. 28 2.2.4 Electrochemical and photo electrochemical measurements……………… 28 2.2.5 General procedure of H2 evolution……………………………………….. 29 2.2.6 General procedure of photocatalytic reduction…………………………… 29 Chapter 3: A single‐phase, thermally stable and color-tunable white light emitting Na2Ca1-x-yCexMnyP2O7 phosphor for white light emitting diodes via energy transfer………………………………………………………………….. 30 3.1 Motivation………………………………………………………………….. 30 3.2 Results and discussion……………………………………………………… 32 3.2.1 XRD and crystal structure of Na2Ca1-x-yMnxCeyP2O7 phosphors………. 32 3.2.2 FESEM and elemental mapping of Na2Ca1-x-yCexMnyP2O7 Phosphor….. 34 3.2.3 X-ray photoelectron spectra (XPS) of Na2Ca1-x-yCexMnyP2O7 phosphors.. 35 3.2.4 Optical studies of Na2Ca1-x-yCexMnyP2O7 phosphors…………………….. 38 3.3 Summary……………………………………………………………………. 50 Chapter 4: Spectroscopic and optical properties of thermally stable Na2Ca1-xP2O7:xEu3+ phosphors for wLEDs…………………………………………….. 51 4.1 Motivation………………………………………………………………….. 51 4.2 Results and discussion……………………………………………………… 53 4.2.1 XRD and crystal structure of Na2Ca1-xEuxP2O7 phosphors………………. 53 4.2.2 X-ray photoelectron spectra (XPS) of Na2Ca0.95P2O7:0.05 Eu3+ phosphors 55 4.2.3 FESEM-EDS and elemental mapping of Na2Ca0.95Eu0.05P2O7 phosphors.. 56 4.2.4 Optical studies of Na2Ca1-xEuxP2O7 phosphors………………………… 57 4.3. Summary…………………………………………………………………… 66 Chapter 5: Highly Efficient and Thermally Stable Eu3+ Activated Phosphate Based Phosphors for wLEDs…………………………………………………… 67 5.1 Motivation…………………………………………………………………... 67 5.2 Results and Discussions…………………………………………………….. 68 5.2.1. Selection of suitable host via composition ternary phase diagram……... 68 5.2.2 XRD and crystal structure of NaCa1-x Eux(PO3)3 phosphors…………… 71 5.2.3 X-ray photoelectron spectra (XPS) of NaCa0.95Eu0.05(PO3)3 phosphors….. 73 5.2.4 Morphological analysis of NaCa1-xEux(PO3)3 phosphors………………… 74 5.2.5 Optical studies of NaCa1-xEux(PO3)3 phosphors………………………….. 75 5.3 Summary……………………………………………………………………. 85 Chapter 6: Hydrogenation of carboxylic acids using urea-rich waste water over visible-light-responsive rare earth doped photocatalyst ………………………. 86 6.1 Motivation…………………………………………………………………... 86 6.2 Results and discussion……………………………………………………… 88 6.2.1 XRD, crystal structure and FT-IR analysis of Na2Ca1-xEuP2O7 catalyst… 88 6.2.2 X-ray photoelectron spectra (XPS) of Eu3+ doped Na2CaP2O7 catalysts… 90 6.2.3 Morphological analysis of Eu3+ doped Na2CaP2O7 catalysts…………….. 91 6.2.4 Optical studies of Na2Ca1-xEuxP2O7 catalysts…………………………….. 93 6.2.5 Electrochemical and catalytic performance………………………………. 95 6.3 Summary……………………………………………………………………. 103 Chapter 7: General conclusion………………………………………………….. 104 Chapter 8: Recommendation and future prospective…………………………… 107 References………………………………………………………………………. 108 Appendix 1. Highly Efficient and Thermally Stable Eu3+Activated Phosphate Based Phosphors for wLEDs…………………………………………………… 148 Appendix 2: Hydrogen and hydrogenation of carboxylic acids using urea-rich waste water over visible-light-responsive rare earth doped photocatalyst ….…. 159

    [1] G.B. Nair, H.C. Swart, S.J. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization, Prog. Mater. Sci. 109 (2020) 100622. https://doi.org/10.1016/j.pmatsci.2019.100622.
    [2] H. Zhao, Z.-Y. Yuan, Insights into Transition Metal Phosphate Materials for Efficient Electrocatalysis, ChemCatChem. 12 (2020) 3797–3810. https://doi.org/https://doi.org/10.1002/cctc.202000360.
    [3] Z. Xia, Z. Xu, M. Chen, Q. Liu, Recent developments in the new inorganic solid-state LED phosphors, Dalt. Trans. 45 (2016) 11214–11232. https://doi.org/10.1039/C6DT01230B.
    [4] M.L. Meena, C.-H. Lu, S. Som, R. Chaurasiya, S.D. Lin, Highly efficient and thermally stable Eu3+ activated phosphate based phosphors for wLEDs: An experimental and DFT study, J. Alloys Compd. 895 (2022) 162670. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.162670.
    [5] R. Mahajan, R. Prakash, A review report on structural and optical characterization of rare earth/transition metal doped pyrophosphate phosphors, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09279-2.
    [6] E.F. Schubert, J.K. Kim, Solid-State Light Sources Getting Smart, Science (80-. ). 308 (2005) 1274–1278. https://doi.org/10.1126/science.1108712.
    [7] A. Bergh, G. Craford, A. Duggal, R. Haitz, The Promise and Challenge of Solid-State Lighting, Phys. Today. 54 (2001) 42–47. https://doi.org/10.1063/1.1445547.
    [8] G. Li, Y. Tian, Y. Zhao, J. Lin, Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs, Chem. Soc. Rev. 44 (2015) 8688–8713. https://doi.org/10.1039/C4CS00446A.
    [9] N.C. George, K.A. Denault, R. Seshadri, Phosphors for Solid-State White Lighting, Annu. Rev. Mater. Res. 43 (2013) 481–501. https://doi.org/10.1146/annurev-matsci-073012-125702.
    [10] I. Gupta, S. Singh, S. Bhagwan, D. Singh, Rare earth (RE) doped phosphors and their emerging applications: A review, Ceram. Int. 47 (2021) 19282–19303. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.03.308.
    [11] H. Hu, W. Zhang, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles, Opt. Mater. (Amst). 28 (2006) 536–550. https://doi.org/https://doi.org/10.1016/j.optmat.2005.03.015.
    [12] S. Editors, Z.M. Wang, C. Jagadish, R. Hull, R.M. Osgood, Phosphate Phosphors for Solid-State Lighting, n.d.
    [13] A.A. Setlur, R.J. Lyons, J.E. Murphy, N. Prasanth Kumar, M. Satya Kishore, Blue Light-Emitting Diode Phosphors Based upon Oxide, Oxyhalide, and Halide Hosts, ECS J. Solid State Sci. Technol. 2 (2013) R3059. https://doi.org/10.1149/2.009302jss.
    [14] Z. Wu, Z. Xia, Phosphors for white LEDs, in: J. Huang, H.-C. Kuo, S.-C.B.T.-N.S.L.-E.D. (LEDs) (Second E. Shen (Eds.), Woodhead Publ. Ser. Electron. Opt. Mater., Woodhead Publishing, 2018: pp. 123–208. https://doi.org/https://doi.org/10.1016/B978-0-08-101942-9.00005-8.
    [15] M. Shang, C. Li, J. Lin, How to produce white light in a single-phase host?, Chem. Soc. Rev. 43 (2014) 1372–1386. https://doi.org/10.1039/C3CS60314H.
    [16] H.A. Höppe, Recent Developments in the Field of Inorganic Phosphors, Angew. Chemie Int. Ed. 48 (2009) 3572–3582. https://doi.org/https://doi.org/10.1002/anie.200804005.
    [17] L. Wang, R.-J. Xie, T. Suehiro, T. Takeda, N. Hirosaki, Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives, Chem. Rev. 118 (2018) 1951–2009. https://doi.org/10.1021/acs.chemrev.7b00284.
    [18] X. Luo, R.-J. Xie, Recent progress on discovery of novel phosphors for solid state lighting, J. Rare Earths. 38 (2020) 464–473. https://doi.org/https://doi.org/10.1016/j.jre.2020.01.016.
    [19] S. Som, A.K. Kunti, V. Kumar, V. Kumar, S. Dutta, M. Chowdhury, S.K. Sharma, J.J. Terblans, H.C. Swart, Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu3+ in CaTiO3 for red emission in display application, J. Appl. Phys. 115 (2014). https://doi.org/10.1063/1.4876316.
    [20] S. Dutta, S. Som, J. Priya, S.K. Sharma, Band gap, CIE and trap depth parameters of rare earth molybdate phosphors for optoelectronic applications, Solid State Sci. 18 (2013) 114–122. https://doi.org/https://doi.org/10.1016/j.solidstatesciences.2013.01.012.
    [21] C.R. Ronda, Luminescence: From Theory to Applications, Lumin. From Theory to Appl. (2007) 1–260. https://doi.org/10.1002/9783527621064.
    [22] Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramićanin, M.G. Brik, M. Wu, Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review, J. Mater. Chem. C. 6 (2018) 2652–2671. https://doi.org/10.1039/C8TC00251G.
    [23] R. Cao, W. Wang, J. Zhang, S. Jiang, Z. Chen, W. Li, X. Yu, Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting, J. Alloys Compd. 704 (2017) 124–130. https://doi.org/https://doi.org/10.1016/j.jallcom.2017.02.079.
    [24] P. Cai, L. Qin, C. Chen, J. Wang, S. Bi, S. Il Kim, Y. Huang, H.J. Seo, Optical Thermometry Based on Vibration Sidebands in Y2MgTiO6:Mn4+ Double Perovskite, Inorg. Chem. 57 (2018) 3073–3081. https://doi.org/10.1021/acs.inorgchem.7b02938.
    [25] A. Biswas, S. Sarkar, Y.M. Jana, D. Swarnakar, S. Nandi, C. Rudowicz, M. Açıkgöz, N.M. Avram, Analysis of crystal-field effect on luminescence spectra of Mn4+ (3d3) ion-doped double perovskite La2ZnTiO6 phosphor by semiempirical computations: exchange charge model and superposition model, J. Mater. Chem. C. 10 (2022) 4355–4364. https://doi.org/10.1039/D2TC00407K.
    [26] M.G. Brik, A.M. Srivastava, On the optical properties of the Mn4+ ion in solids, J. Lumin. 133 (2013) 69–72. https://doi.org/https://doi.org/10.1016/j.jlumin.2011.08.047.
    [27] Y. Li, S. Qi, P. Li, Z. Wang, Research progress of Mn doped phosphors, RSC Adv. 7 (2017) 38318–38334. https://doi.org/10.1039/C7RA06026B.
    [28] M. Jiao, Y. Jia, W. Lü, W. Lv, Q. Zhao, B. Shao, H. You, Sr3GdNa(PO4)3F:Eu2+,Mn2+: a potential color tunable phosphor for white LEDs, J. Mater. Chem. C. 2 (2014) 90–97. https://doi.org/10.1039/C3TC31837K.
    [29] B. Malysa, A. Meijerink, T. Jüstel, Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La), J. Lumin. 202 (2018) 523–531. https://doi.org/https://doi.org/10.1016/j.jlumin.2018.05.076.
    [30] Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang, Z. Li, Y. Dong, J. Jiang, Broadband near-infrared light source derived from Cr3+-doped phosphors and a blue LED chip, Opt. Lett. 43 (2018) 5251–5254. https://doi.org/10.1364/OL.43.005251.
    [31] H. Li, R. Pang, Y. Luo, H. Wu, S. Zhang, L. Jiang, D. Li, C. Li, H. Zhang, Structural Micromodulation on Bi3+-Doped Ba2Ga2GeO7 Phosphor with Considerable Tunability of the Defect-Oriented Optical Properties, ACS Appl. Electron. Mater. 1 (2019) 229–237. https://doi.org/10.1021/acsaelm.8b00072.
    [32] M. Li, L. Wang, W. Ran, Q. Liu, C. Ren, H. Jiang, J. Shi, Broadly tunable emission from Ca2Al2SiO7:Bi phosphors based on crystal field modulation around Bi ions, New J. Chem. 40 (2016) 9579–9585. https://doi.org/10.1039/C6NJ01755J.
    [33] Z. Xia, D. Chen, M. Yang, T. Ying, Synthesis and luminescence properties of YVO4:Eu3+,Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping, J. Phys. Chem. Solids. 71 (2010) 175–180. https://doi.org/https://doi.org/10.1016/j.jpcs.2009.10.016.
    [34] J. Li, J. Liu, X. Yu, Synthesis and luminescence properties of Bi3+-doped YVO4 phosphors, J. Alloys Compd. 509 (2011) 9897–9900. https://doi.org/https://doi.org/10.1016/j.jallcom.2011.07.079.
    [35] A. Yousif, R.M. Jafer, S. Som, M.M. Duvenhage, E. Coetsee, H.C. Swart, Ultra-broadband luminescent from a Bi doped CaO matrix, RSC Adv. 5 (2015) 54115–54122. https://doi.org/10.1039/C5RA09246A.
    [36] J. Shen, L.-D. Sun, C.-H. Yan, Luminescent rare earth nanomaterials for bioprobe applications, Dalt. Trans. (2008) 5687–5697. https://doi.org/10.1039/B805306E.
    [37] G.F. de Sá, O.L. Malta, C. de Mello Donegá, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, E.F. da Silva, Spectroscopic properties and design of highly luminescent lanthanide coordination complexes, Coord. Chem. Rev. 196 (2000) 165–195. https://doi.org/https://doi.org/10.1016/S0010-8545(99)00054-5.
    [38] G.H. Dieke, H.M. Crosswhite, The Spectra of the Doubly and Triply Ionized Rare Earths, Appl. Opt. 2 (1963) 675–686. https://doi.org/10.1364/AO.2.000675.
    [39] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 , J. Chem. Phys. 90 (1989) 3443–3457. https://doi.org/10.1063/1.455853.
    [40] H. Dong, L.-D. Sun, C.-H. Yan, Energy transfer in lanthanide upconversion studies for extended optical applications, Chem. Soc. Rev. 44 (2015) 1608–1634. https://doi.org/10.1039/C4CS00188E.
    [41] G.B. Nair, A. Kumar, H.C. Swart, S.J. Dhoble, Facile precipitation synthesis of green-emitting BaY2F8:Yb3+, Ho3+ upconverting phosphor, Ceram. Int. 45 (2019) 14205–14213. https://doi.org/https://doi.org/10.1016/j.ceramint.2019.04.127.
    [42] T. V Balashova, A.P. Pushkarev, A.N. Yablonskiy, B.A. Andreev, I.D. Grishin, R. V Rumyantcev, G.K. Fukin, M.N. Bochkarev, Organic Er-Yb complexes as potential upconversion materials, J. Lumin. 192 (2017) 208–211. https://doi.org/https://doi.org/10.1016/j.jlumin.2017.06.058.
    [43] D.W. Goodwin, Spectra and Energy Levels of Rare Earth Ions in Crystals, Phys. Bull. 20 (1969) 525. https://doi.org/10.1088/0031-9112/20/12/010.
    [44] L.-Y. Shi, D. Zhao, R.-J. Zhang, S.-Y. Zhu, M.-H. Yu, A new type of phosphate-based phosphor Na3CsMg7(PO4)6:Eu2+/Mn2+ with high quantum efficiency and high thermostability, Dalt. Trans. 51 (2022) 3686–3694. https://doi.org/10.1039/D1DT04393E.
    [45] P.M. Maleka, L. Reddy, T.J. Nkosi, A. Balakrishna, R.E. Kroon, H.C. Swart, O.M. Ntwaeaborwa, Structural and morphological characterization of photoluminescent cerium-doped near UV-blue sodium ortho-phosphate phosphors, J. Lumin. 226 (2020) 117409. https://doi.org/https://doi.org/10.1016/j.jlumin.2020.117409.
    [46] B. V Ratnam, M. Jayasimhadri, G. Bhaskar Kumar, K. Jang, S.S. Kim, Y.I. Lee, J.M. Lim, D.S. Shin, T.K. Song, Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs, J. Alloys Compd. 564 (2013) 100–104. https://doi.org/https://doi.org/10.1016/j.jallcom.2013.01.203.
    [47] J.P. Attfield, Phosphates: Solid-State Chemistry, in: Encycl. Inorg. Bioinorg. Chem., 2014: pp. 1–16. https://doi.org/https://doi.org/10.1002/9781119951438.eibc0169.pub2.
    [48] K.N. Shinde, S.J. Dhoble, Europium-Activated Orthophosphate Phosphors For Energy-Efficient Solid-State Lighting: A Review, Crit. Rev. Solid State Mater. Sci. 39 (2014) 459–479. https://doi.org/10.1080/10408436.2013.803456.
    [49] C.C. Lin, Z.R. Xiao, G.-Y. Guo, T.-S. Chan, R.-S. Liu, Versatile Phosphate Phosphors ABPO4 in White Light-Emitting Diodes: Collocated Characteristic Analysis and Theoretical Calculations, J. Am. Chem. Soc. 132 (2010) 3020–3028. https://doi.org/10.1021/ja9092456.
    [50] M.K. Pradhan, T.L. Rao, U.K. Goutam, S. Dash, Probing structural and photophysical features of Eu3+ activated NaCdPO4 orthophosphate phosphor, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 240 (2020) 118593. https://doi.org/https://doi.org/10.1016/j.saa.2020.118593.
    [51] M. Enneffati, N.K. Maaloul, B. Louati, K. Guidara, K. Khirouni, Synthesis, vibrational and UV–visible studies of sodium cadmium orthophosphate, Opt. Quantum Electron. 49 (2017) 331. https://doi.org/10.1007/s11082-017-1169-2.
    [52] H. Ji, Z. Huang, Z. Xia, M.S. Molokeev, V. V Atuchin, M. Fang, S. Huang, New Yellow-Emitting Whitlockite-type Structure Sr1.75Ca1.25(PO4)2:Eu2+ Phosphor for Near-UV Pumped White Light-Emitting Devices, Inorg. Chem. 53 (2014) 5129–5135. https://doi.org/10.1021/ic500230v.
    [53] C.-H. Huang, T.-M. Chen, Novel Yellow-Emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) Phosphors for Applications in White LEDs with Excellent Color Rendering Index, Inorg. Chem. 50 (2011) 5725–5730. https://doi.org/10.1021/ic200515w.
    [54] N. Guo, Y. Huang, Y. Jia, W. Lv, Q. Zhao, W. Lü, Z. Xia, H. You, A novel orange-yellow-emitting Ba3Lu(PO4)3:Eu2+,Mn2+ phosphor with energy transfer for UV-excited white LEDs, Dalt. Trans. 42 (2013) 941–947. https://doi.org/10.1039/C2DT31657A.
    [55] Z. Wang, Z. Xia, M.S. Molokeev, V. V Atuchin, Q. Liu, Blue-shift of Eu2+ emission in (Ba,Sr)3Lu(PO4)3:Eu2+ eulytite solid-solution phosphors resulting from release of neighbouring-cation-induced stress, Dalt. Trans. 43 (2014) 16800–16804. https://doi.org/10.1039/C4DT02319F.
    [56] C. Zhang, J. Lin, Defect-related luminescent materials: Synthesis, emission properties and applications, Chem. Soc. Rev. 41 (2012) 7938–7961. https://doi.org/10.1039/c2cs35215j.
    [57] M. Daoud, D. Zambon, R. Mahiou, A. Ammar, B. Tanouti, Spectroscopic Properties of Trivalent Gadolinium in Diphosphate CsYP2O7, Mater. Res. Bull. 33 (1998) 597–603. https://doi.org/https://doi.org/10.1016/S0025-5408(98)00012-9.
    [58] A. Mbarek, Synthesis, structural and optical properties of Eu3+-doped ALnP2O7 (A = Cs, Rb, Tl; Ln = Y, Lu, Tm) pyrophosphates phosphors for solid-state lighting, J. Mol. Struct. 1138 (2017) 149–154. https://doi.org/https://doi.org/10.1016/j.molstruc.2017.03.010.
    [59] M. Derbel, A. Mbarek, M. Fourati, Photoluminescence properties of CdSrP2O7:Eu2+ blue phosphor for white LED applications, Optik (Stuttg). 127 (2016) 5870–5875. https://doi.org/https://doi.org/10.1016/j.ijleo.2016.04.020.
    [60] Y.-K. Kim, S. Choi, H.-K. Jung, Photoluminescence properties of Eu2+ and Mn2+-activated BaMgP2O7 as a potential red phosphor for white-emission, J. Lumin. 130 (2010) 60–64. https://doi.org/https://doi.org/10.1016/j.jlumin.2009.07.035.
    [61] J.-L. Yuan, X.-Y. Zeng, J.-T. Zhao, Z.-J. Zhang, H.-H. Chen, G.-B. Zhang, Rietveld refinement and photoluminescent properties of a new blue-emitting material: Eu2+ activated SrZnP2O7, J. Solid State Chem. 180 (2007) 3310–3316. https://doi.org/https://doi.org/10.1016/j.jssc.2007.09.023.
    [62] I.D. Brown, C. Calvo, The crystal chemistry of large cation dichromates, pyrophosphates, and related compounds with stoichiometry X2Y2O7, J. Solid State Chem. 1 (1970) 173–179. https://doi.org/https://doi.org/10.1016/0022-4596(70)90010-1.
    [63] Z. Hao, J. Zhang, X. Zhang, X. Sun, Y. Luo, S. Lu, X. Wang, White light emitting diode by using α-Ca2P2O7:Eu2+, Mn2+ phosphor, Appl. Phys. Lett. 90 (2007) 261113. https://doi.org/10.1063/1.2752725.
    [64] Z. Hao, J. Zhang, X. Zhang, S. Lu, Y. Luo, X. Ren, X. Wang, Phase dependent photoluminescence and energy transfer in Ca2P2O7: Eu2+, Mn2+ phosphors for white LEDs, J. Lumin. 128 (2008) 941–944. https://doi.org/https://doi.org/10.1016/j.jlumin.2007.11.035.
    [65] R. Pang, C. Li, S. Zhang, Q. Su, Luminescent properties of a new blue long-lasting phosphor Ca2P2O7:Eu2+, Y3+, Mater. Chem. Phys. 113 (2009) 215–218. https://doi.org/https://doi.org/10.1016/j.matchemphys.2008.07.061.
    [66] R.L. Kohale, S.J. Dhoble, Optical performance of Ca2P2O7:Ce3+ pyrophosphate phosphor synthesized via modified solid state diffusion, J. Mol. Struct. 1170 (2018) 18–23. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.05.065.
    [67] Y. Tian, Y. Fang, B. Tian, C. Cui, P. Huang, L. Wang, H. Jia, B. Chen, Molten salt synthesis, energy transfer, and temperature quenching fluorescence of green-emitting β-Ca2P2O7:Tb3+ phosphors, J. Mater. Sci. 50 (2015) 6060–6065. https://doi.org/10.1007/s10853-015-9155-1.
    [68] A. Jain, A. Kumar, S.J. Dhoble, D.R. Peshwe, Optical property investigations of polystyrene capped Ca2P2O7:Dy3+ persistent phosphor, Mater. Res. Bull. 70 (2015) 980–987. https://doi.org/https://doi.org/10.1016/j.materresbull.2015.06.018.
    [69] S. Ye, Z.-S. Liu, J.-G. Wang, X.-P. Jing, Luminescent properties of Sr2P2O7:Eu,Mn phosphor under near UV excitation, Mater. Res. Bull. 43 (2008) 1057–1065. https://doi.org/https://doi.org/10.1016/j.materresbull.2007.07.039.
    [70] M.J. Xu, L.X. Wang, D.Z. Jia, L. Liu, L. Zhang, Z.P. Guo, R. Sheng, Morphology Tunable Self-Assembled Sr2P2O7:Ce3+, Mn2+ Phosphor and Luminescence Properties, J. Am. Ceram. Soc. 96 (2013) 1198–1202. https://doi.org/https://doi.org/10.1111/jace.12161.
    [71] Z.S. Khan, N.B. Ingale, S.K. Omanwar, Synthesis and luminescence studies of Eu (III) doped Sr2P2O7 phosphor for white LED applications, AIP Conf. Proc. 1953 (2018) 70024. https://doi.org/10.1063/1.5032802.
    [72] S. Xu, S. Liu, C. Zhao, T. Han, D. Zhu, Luminescent properties of single-phase Ba2P2O7:Tb3+, R (R = Eu2+, Ce3+) phosphors for white LED, J. Mater. Sci. Mater. Electron. 28 (2017) 10061–10066. https://doi.org/10.1007/s10854-017-6766-0.
    [73] K.K. Gupta, N.S. Dhoble, D.K. Burghate, S.J. Dhoble, Luminescence properties of nanocrystalline Mg2P2O7:Eu phosphor, Luminescence. 33 (2018) 947–953. https://doi.org/https://doi.org/10.1002/bio.3494.
    [74] R. Mahajan, R. Prakash, Effect of Sm3+ doping on optical properties of Mg2P2O7 and Mg3P2O8 phosphors, Mater. Chem. Phys. 246 (2020) 122826. https://doi.org/https://doi.org/10.1016/j.matchemphys.2020.122826.
    [75] F. Xiao, E.H. Song, Q.Y. Zhang, A yellow-emitting phosphor of Mn2+-doped Na2CaP2O7, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122 (2014) 343–347. https://doi.org/https://doi.org/10.1016/j.saa.2013.10.078.
    [76] D.L. Dexter, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys. 21 (1953) 836–850. https://doi.org/10.1063/1.1699044.
    [77] L.R. Hatwar, S.P. Wankhede, S. V Moharil, P.L. Muthal, S.M. Dhopte, Luminescence and energy transfer in Ce3+, Mn2+-doped K2AEP2O7 (AE = Ca, Sr) phosphor, Luminescence. 30 (2015) 904–909. https://doi.org/https://doi.org/10.1002/bio.2843.
    [78] D. Hou, J.-Y. Li, X. Pan, X. Ye, J. Fu, R. Li, Investigation on the Ultraviolet-Visible Luminescence of Ce3+ Activated K2CaP2O7 Phosphor, ECS J. Solid State Sci. Technol. 5 (2016) R120. https://doi.org/10.1149/2.0071607jss.
    [79] N.P. Patel, M. Srinivas, D. Modi, V. Vishwnath, K.V.R. Murthy, Luminescence study and dosimetry approach of Ce on an α-Sr2P2O7 phosphor synthesized by a high-temperature combustion method, Luminescence. 30 (2015) 472–478. https://doi.org/https://doi.org/10.1002/bio.2762.
    [80] Z. Hao, Z. Nie, S. Ye, R. Zhong, X. Zhang, L. Chen, X. Ren, S. Lu, X. Wang, J. Zhang, Luminescence and Energy Transfer in Eu2 +  and Mn2 +  Co-doped Ca2P2O7 for White Light-Emitting Diodes, J. Electrochem. Soc. 155 (2008) H606. https://doi.org/10.1149/1.2943412.
    [81] R.L. Kohale, K.N. Shinde, K. Park, S.J. Dhoble, Synthesis and luminescence properties of Eu2+ activated Ca 2P2O7 pyrophosphate phosphor, J. Nanosci. Nanotechnol. 14 (2014) 5976–5978. https://doi.org/10.1166/jnn.2014.8313.
    [82] F. Mo, R. Wang, Y. Lan, L. Zhou, T. He, X. Xu, Synthesis and luminescent properties of M 2P 2O 7:Eu 3+ (M = Ca, Sr, Ba) phosphors, Adv. Mater. Res. 399–401 (2012) 978–981. https://doi.org/10.4028/www.scientific.net/AMR.399-401.978.
    [83] R. Pang, C. Li, L. Shi, Q. Su, A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+, J. Phys. Chem. Solids. 70 (2009) 303–306. https://doi.org/https://doi.org/10.1016/j.jpcs.2008.10.016.
    [84] M. Peng, L. Wondraczek, Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation, Opt. Lett. 35 (2010) 2544–2546. https://doi.org/10.1364/OL.35.002544.
    [85] C.-G. Ma, W. Zheng, L.-G. Jin, L.-M. Dong, Fluorescence and preparation of Sr2(P2O7):Ce,Tb phosphate by co-precipitation method, Rare Met. 32 (2013) 420–424. https://doi.org/10.1007/s12598-013-0113-2.
    [86] R. Cao, C. Cao, X. Yu, W. Li, J. Qiu, Photoluminescence of Sr2P2O7:Sm3+ Phosphor as Reddish Orange Emission for White Light-Emitting Diodes, Int. J. Appl. Ceram. Technol. 12 (2015) 755–759. https://doi.org/https://doi.org/10.1111/ijac.12370.
    [87] B. Wang, Q. Ren, O. Hai, X. Wu, Luminescence properties and energy transfer in Tb3+ and Eu3+ co-doped Ba2P2O7 phosphors, RSC Adv. 7 (2017) 15222–15227. https://doi.org/10.1039/C6RA28122B.
    [88] S.P. Ghawade, K.A. Deshmukh, S.J. Dhoble, A.D. Deshmukh, Photoluminescence in Sm3+ doped Ba2P2O7 phosphor prepared by solution combustion method, AIP Conf. Proc. 1953 (2018) 70019. https://doi.org/10.1063/1.5032797.
    [89] S.K. Gupta, M. Mohapatra, S. V Godbole, V. Natarajan, On the unusual photoluminescence of Eu3+ in α-Zn2P2O7: a time resolved emission spectrometric and Judd–Ofelt study, RSC Adv. 3 (2013) 20046–20053. https://doi.org/10.1039/C3RA43027H.
    [90] M. Xu, L. Wang, D. Jia, F. Le, Luminescence properties and energy transfer investigations of Zn2P2O7: Ce3+, Tb3+ phosphor, J. Lumin. 158 (2015) 125–129. https://doi.org/https://doi.org/10.1016/j.jlumin.2014.09.040.
    [91] S.K. Gupta, P.S. Ghosh, A.K. Yadav, S.N. Jha, D. Bhattacharyya, R.M. Kadam, Origin of Blue-Green Emission in α-Zn2P2O7 and Local Structure of Ln3+ Ion in α-Zn2P2O7:Ln3+ (Ln = Sm, Eu): Time-Resolved Photoluminescence, EXAFS, and DFT Measurements, Inorg. Chem. 56 (2017) 167–178. https://doi.org/10.1021/acs.inorgchem.6b01788.
    [92] R. Mahajan, S. Kumar, R. Prakash, V. Kumar, R.J. Choudhary, D.M. Phase, X-ray photoemission and spectral investigations of Dy3+ activated magnesium pyrophosphate phosphors, J. Alloys Compd. 777 (2019) 562–571. https://doi.org/https://doi.org/10.1016/j.jallcom.2018.10.355.
    [93] R. Mahajan, R. Prakash, R.J. Choudhary, D.M. Phase, Structural, electronic and optical characterization of Eu3+/Dy3+ single and co-doped Mg2P2O7 phosphors, Phys. Scr. 96 (2021) 75808. https://doi.org/10.1088/1402-4896/abfa42.
    [94] G.R. Dillip, K. Munirathnam, B.D.P. Raju, N.J. Sushma, S.W. Joo, An efficient orange–red-emitting LiNa3P2O7:Sm3+ pyrophosphate: Structural and optical analysis for solid-state lighting, Luminescence. 32 (2017) 772–778. https://doi.org/https://doi.org/10.1002/bio.3249.
    [95] K. Munirathnam, G.R. Dillip, B.D.P. Raju, S.W. Joo, S.J. Dhoble, B.M. Nagabhushana, R. Hari Krishna, K.P. Ramesh, S. Varadharaj Perumal, D. Prakashbabu, Synthesis, photoluminescence and Judd–Ofelt parameters of LiNa3P2O7:Eu3+ orthorhombic microstructures, Appl. Phys. A. 120 (2015) 1615–1623. https://doi.org/10.1007/s00339-015-9371-1.
    [96] K. Munirathnam, G.R. Dillip, S. Chaurasia, S.W. Joo, B. Deva Prasad Raju, N. John Sushma, Investigations on surface chemical analysis using X-ray photoelectron spectroscopy and optical properties of Dy3+-doped LiNa3P2O7 phosphor, J. Mol. Struct. 1118 (2016) 117–123. https://doi.org/https://doi.org/10.1016/j.molstruc.2016.04.004.
    [97] E. Song, W. Zhao, X. Dou, Y. Zhu, S. Yi, H. Min, Nonradiative energy transfer from Mn2+ to Eu3+ in K2CaP2O7:Mn2+,Eu3+ phosphor, J. Lumin. 132 (2012) 1462–1467. https://doi.org/https://doi.org/10.1016/j.jlumin.2012.01.004.
    [98] K. S. Dhoble, J. A. Wani, S. J. Dhoble, NUV Excited K2SrP2O7: RE3+ (RE = Sm, Tb, Eu, Dy) Phosphors For White Light Generation , Adv. Mater. Lett. 7 (2016) 765–769. https://doi.org/10.5185/amlett.2016.6182.
    [99] K.N. Shinde, Luminescence in Eu2+ and Ce3+ doped SrCaP2O7 phosphors, Results Phys. 7 (2017) 178–182. https://doi.org/https://doi.org/10.1016/j.rinp.2016.12.030.
    [100] R.G. Kunghatkar, V.L. Barai, S.J. Dhoble, Synthesis route dependent characterizations of CaMgP2O7: Gd3+ phosphor, Results Phys. 13 (2019) 102295. https://doi.org/https://doi.org/10.1016/j.rinp.2019.102295.
    [101] S. Kampouri, K.C. Stylianou, Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances, ACS Catal. 9 (2019) 4247–4270. https://doi.org/10.1021/acscatal.9b00332.
    [102] Stuck On Fossil Fuels, Chem. Eng. News Arch. 90 (2012) 27. https://doi.org/10.1021/cen-09023-govpol3.
    [103] Q. Wang, K. Zheng, H. Yu, L. Zhao, X. Zhu, J. Zhang, Laboratory experiment on the nano-TiO2 photocatalytic degradation effect of road surface oil pollution, 9 (2020) 922–933. https://doi.org/doi:10.1515/ntrev-2020-0072.
    [104] J. Wang, M. Wang, Y. Tian, W. Deng, A Review on Photocatalytic Glass Ceramics: Fundamentals, Preparation, Performance Enhancement and Future Development, Catalysts. 12 (2022). https://doi.org/10.3390/catal12101235.
    [105] N. Denisov, J. Yoo, P. Schmuki, Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes, Electrochim. Acta. 319 (2019) 61–71. https://doi.org/https://doi.org/10.1016/j.electacta.2019.06.173.
    [106] J.Z.Y. Tan, M.M. Maroto-Valer, A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO2 photoreduction processes, J. Mater. Chem. A. 7 (2019) 9368–9385. https://doi.org/10.1039/C8TA10410G.
    [107] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev. 11 (2007) 401–425. https://doi.org/https://doi.org/10.1016/j.rser.2005.01.009.
    [108] A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nat. Mater. 10 (2011) 456–461. https://doi.org/10.1038/nmat3017.
    [109] Q. Xiang, J. Yu, M. Jaroniec, Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles, J. Am. Chem. Soc. 134 (2012) 6575–6578. https://doi.org/10.1021/ja302846n.
    [110] H. Li, W. Li, F. Wang, X. Liu, C. Ren, Fabrication of two lanthanides co-doped Bi2MoO6 photocatalyst: Selection, design and mechanism of Ln1/Ln2 redox couple for enhancing photocatalytic activity, Appl. Catal. B Environ. 217 (2017) 378–387. https://doi.org/https://doi.org/10.1016/j.apcatb.2017.06.015.
    [111] J. Chen, S. Shen, P. Wu, L. Guo, Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production, Green Chem. 17 (2015) 509–517. https://doi.org/10.1039/C4GC01683A.
    [112] D. Wu, S. Yue, W. Wang, T. An, G. Li, H.Y. Yip, H. Zhao, P.K. Wong, Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli, Appl. Catal. B Environ. 192 (2016) 35–45. https://doi.org/https://doi.org/10.1016/j.apcatb.2016.03.046.
    [113] C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, W. Xing, C. Zhang, Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water, Appl. Catal. B Environ. 188 (2016) 39–47. https://doi.org/https://doi.org/10.1016/j.apcatb.2016.01.054.
    [114] N. Basavaraju, S.C. Prashantha, H. Nagabhushana, M. Chandrasekhar, A.N. Kumar, T.R.S. Shekhar, S. Ashwini, K.S. Anantharaju, A benign approach for novel synthesis of Eu3+ doped MgNb2O6: Its photoluminescence and photocatalytic studies, Ceram. Int. 47 (2021) 14899–14906. https://doi.org/https://doi.org/10.1016/j.ceramint.2020.07.242.
    [115] J.B. Prasanna kumar, G. Ramgopal, Y.S. Vidya, K.S. Anantharaju, B. Daruka Prasad, S.C. Sharma, S.C. Prashantha, H.B. Premkumar, H. Nagabhushana, Bio-inspired synthesis of Y2O3: Eu3+ red nanophosphor for eco-friendly photocatalysis, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 141 (2015) 149–160. https://doi.org/https://doi.org/10.1016/j.saa.2015.01.055.
    [116] P. Shanmugam, T. Dheivasigamani, S. Moorthy Babu, M. Shkir, E. El Sayed Massoud, R. Marnadu, V. Reddy Minnam Reddy, A facile sol-gel synthesis and characterization of europium (Eu) doped β-Bi2Mo2O9 nanoparticles with remarkably enhanced photocatalytic activity for waste-water treatments, Inorg. Chem. Commun. (2022) 110163. https://doi.org/https://doi.org/10.1016/j.inoche.2022.110163.
    [117] D. Komaraiah, E. Radha, J. James, N. Kalarikkal, J. Sivakumar, M. V Ramana Reddy, R. Sayanna, Effect of particle size and dopant concentration on the Raman and the photoluminescence spectra of TiO2:Eu3+ nanophosphor thin films, J. Lumin. 211 (2019) 320–333. https://doi.org/https://doi.org/10.1016/j.jlumin.2019.03.050.
    [118] D. Wei, J. Bai, Y. Huang, H.J. Seo, Surface oxygen defects induced via low-temperature annealing and its promotion to luminescence and photocatalysis of Eu3+-doped Te3Nb2O11 nanoparticles, Appl. Surf. Sci. 533 (2020) 147502. https://doi.org/https://doi.org/10.1016/j.apsusc.2020.147502.
    [119] D. Wei, Z. Fan, Y. Huang, H.J. Seo, Particularly developed transition from the 5D1 level of Eu3+ and its significant contribution to the improved photocatalysis of (Bi3Li)O4Cl2via prolonging the decay time of the excited state, J. Mater. Chem. C. 8 (2020) 15717–15727. https://doi.org/10.1039/D0TC03718D.
    [120] L. Qin, P. Cai, C. Chen, H. Cheng, J. Wang, S. Il Kim, H.J. Seo, Enhanced Visible Light-Driven Photocatalysis by Eu3+-Doping in BaNb2V2O11 with Layered Mixed-Anion Structure, J. Phys. Chem. C. 120 (2016) 12989–12998. https://doi.org/10.1021/acs.jpcc.5b12628.
    [121] A. Swapnesh, V.C. Srivastava, I.D. Mall, Comparative Study on Thermodynamic Analysis of CO2 Utilization Reactions, Chem. Eng. Technol. 37 (2014) 1765–1777. https://doi.org/https://doi.org/10.1002/ceat.201400157.
    [122] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2 (2012) 2358–2368. https://doi.org/10.1039/C2RA00632D.
    [123] Z. Zhang, Z. Yu, K. Feng, B. Yan, Eu3+ doping-promoted Ni-CeO2 interaction for efficient low-temperature CO2 methanation, Appl. Catal. B Environ. 317 (2022) 121800. https://doi.org/https://doi.org/10.1016/j.apcatb.2022.121800.
    [124] A. Ansari, D. Mohanta, Structural and XPS studies of polyhedral europium doped gadolinium orthovanadate (Eu3+:GdVO4) nanocatalyst for augmented photodegradation against Congo-red, Phys. E Low-Dimensional Syst. Nanostructures. 143 (2022) 115357. https://doi.org/https://doi.org/10.1016/j.physe.2022.115357.
    [125] M.L. Meena, S. Som, R. Chaurasiya, S.D. Lin, C.-H. Lu, Spectroscopic, optical properties and ab-initio calculation of thermally stable Na2Ca1-xP2O7:xEu3+ phosphors for wLEDs, Ceram. Int. (2022). https://doi.org/https://doi.org/10.1016/j.ceramint.2022.04.086.
    [126] S. Dutta, S. Som, M.L. Meena, R. Chaurasiya, T.-M. Chen, Multisite-Occupancy-Driven Intense Narrow-Band Blue Emission from Sr5SiO4Cl6:Eu2+ Phosphor with Excellent Stability and Color Performance, Inorg. Chem. 59 (2020) 1928–1939. https://doi.org/10.1021/acs.inorgchem.9b03222.
    [127] P. Pust, P.J. Schmidt, W. Schnick, A revolution in lighting, Nat. Mater. 14 (2015) 454–458. https://doi.org/10.1038/nmat4270.
    [128] J. Si, L. Wang, L. Liu, W. Yi, G. Cai, T. Takeda, S. Funahashi, N. Hirosaki, R.-J. Xie, Structure, luminescence and energy transfer in Ce3+ and Mn2+ codoped γ-AlON phosphors, J. Mater. Chem. C. 7 (2019) 733–742. https://doi.org/10.1039/C8TC05430D.
    [129] C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, Z. Yang, Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9−x−yCe(PO4)7:xEu2+,yMn2+, Phys. Chem. Chem. Phys. 18 (2016) 28661–28673. https://doi.org/10.1039/C6CP05490K.
    [130] S.E. Brinkley, N. Pfaff, K.A. Denault, Z. Zhang, H.T. (Bert) Hintzen, R. Seshadri, S. Nakamura, S.P. DenBaars, Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting, Appl. Phys. Lett. 99 (2011) 241106. https://doi.org/10.1063/1.3666785.
    [131] R.-J. Xie, N. Hirosaki, Silicon-based oxynitride and nitride phosphors for white LEDs—A review, Sci. Technol. Adv. Mater. 8 (2007) 588–600. https://doi.org/10.1016/j.stam.2007.08.005.
    [132] Y.Q. Li, A.C.A. Delsing, G. de With, H.T. Hintzen, Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba):  A Promising Class of Novel LED Conversion Phosphors, Chem. Mater. 17 (2005) 3242–3248. https://doi.org/10.1021/cm050175d.
    [133] S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (MGd, Y, Bi), Chem. Phys. Lett. 387 (2004) 2–6. https://doi.org/https://doi.org/10.1016/j.cplett.2003.12.130.
    [134] Z. Zhang, L. Mei, Q. Guo, N. Liu, L. Liao, Cation and polyhedron substitution strategies: Effects on local crystal structure and on Bi3+ and Eu3+ co-doped inverse garnet phosphors’ luminescence property, Ceram. Int. (2022). https://doi.org/https://doi.org/10.1016/j.ceramint.2022.01.089.
    [135] X. Yu, X. Xu, P. Yang, Z. Yang, Z. Song, D. Zhou, Z. Yin, Q. Jiao, J. Qiu, Photoluminescence properties and the self-reduction process of CaAl2Si2O8:Eu phosphor, Mater. Res. Bull. 47 (2012) 117–120. https://doi.org/https://doi.org/10.1016/j.materresbull.2011.09.028.
    [136] J. Liu, X. Wang, T. Xuan, H. Li, Z. Sun, Photoluminescence and thermal stability of Mn2+ co-doped SrSi2O2N2:Eu2+green phosphor synthesized by sol–gel method, J. Alloys Compd. 593 (2014) 128–131. https://doi.org/https://doi.org/10.1016/j.jallcom.2013.12.185.
    [137] Z. Wang, P. Li, Q. Guo, Z. Yang, Luminescence and energy transfer of tunable emission phosphor Ca2PO4Cl:Ce3+, Mn2+, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137 (2015) 871–876. https://doi.org/https://doi.org/10.1016/j.saa.2014.09.023.
    [138] Q. Bao, Z. Wang, J. Sun, Z. Wang, X. Meng, K. Qiu, Y. Chen, Z. Yang, P. Li, Crystal structure, luminescence properties, energy transfer, tunable occupation and thermal properties of a novel color-tunable phosphor NaBa1−zSrzB9O15:xCe3+,yMn2+, Dalt. Trans. 47 (2018) 13913–13925. https://doi.org/10.1039/C8DT02780C.
    [139] A. Shakhno, S. Witkiewicz-Łukaszek, V. Gorbenko, T. Zorenko, Y. Zorenko, Luminescence and photoconversion properties of micro-powder phosphors based on the Ce3+ and Mn2+ doped Ca2YMgScSi3O12 silicate garnets, Opt. Mater. X. 16 (2022) 100187. https://doi.org/https://doi.org/10.1016/j.omx.2022.100187.
    [140] C. Guo, L. Luan, Y. Xu, F. Gao, L. Liang, White Light–Generation Phosphor Ba[sub 2]Ca(BO[sub 3])[sub 2]:Ce[sup 3+], Mn[sup 2+] for Light-Emitting Diodes, J. Electrochem. Soc. 155 (2008) J310. https://doi.org/10.1149/1.2976215.
    [141] Q. Guo, L. Liao, L. Mei, H. Liu, Color-tunable photoluminescence and energy transfer properties of single-phase Ba10(PO4)6O:Eu2+, Mn2+ phosphors, J. Solid State Chem. 232 (2015) 102–107. https://doi.org/https://doi.org/10.1016/j.jssc.2015.09.007.
    [142] Y.N. Xue, F. Xiao, Q.Y. Zhang, A red-emitting Ca8MgLa(PO4)7:Ce3+,Mn2+ phosphor for UV-based white LEDs application, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78 (2011) 1445–1448. https://doi.org/https://doi.org/10.1016/j.saa.2011.01.025.
    [143] J. Zhang, X. Zhang, J. Zhang, W. Ma, X. Ji, S. Liao, Z. Qiu, W. Zhou, L. Yu, S. Lian, Near-UV-to-red light conversion through energy transfer in Ca2Sr(PO4)2:Ce3+,Mn2+ for plant growth, J. Mater. Chem. C. 5 (2017) 12069–12076. https://doi.org/10.1039/C7TC04262K.
    [144] G. Li, D. Geng, M. Shang, C. Peng, Z. Cheng, J. Lin, Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors, J. Mater. Chem. 21 (2011) 13334–13344. https://doi.org/10.1039/C1JM11650A.
    [145] C. Zhang, S. Huang, D. Yang, X. Kang, M. Shang, C. Peng, J. Lin, Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission, J. Mater. Chem. 20 (2010) 6674–6680. https://doi.org/10.1039/C0JM01036G.
    [146] S. Yu, Q. Chen, Y. Lu, B. Cao, J. Li, Z. Liu, Synthesis, luminescent properties and crystal stabilization of GdAG:Mn2+/Ce3+ via Y3+ doping for warm w-LED application, Opt. Mater. (Amst). 111 (2021) 110566. https://doi.org/https://doi.org/10.1016/j.optmat.2020.110566.
    [147] J. Ding, M. Kuang, S. Liu, Z. Zhang, K. Huang, J. Huo, H. Ni, Q. Zhang, J. Li, Sensitization of Mn2+ luminescence via efficient energy transfer to suit the application of high color rendering WLEDs, Dalt. Trans. 51 (2022) 9501–9510. https://doi.org/10.1039/D2DT01152B.
    [148] W. Lü, H. Xu, J. Huo, B. Shao, Y. Feng, S. Zhao, H. You, Tunable white light of a Ce3+,Tb3+,Mn2+ triply doped Na2Ca3Si2O8 phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer, Dalt. Trans. 46 (2017) 9272–9279. https://doi.org/10.1039/C7DT01086A.
    [149] F. Wang, Y. Jin, Y. Liu, L. Zhang, R. Dong, J. Zhang, Tunable luminescence of Na3YSi3O9:Ce3+, Mn2+ via efficient energy transfer for white LEDs, J. Lumin. 206 (2019) 227–233. https://doi.org/https://doi.org/10.1016/j.jlumin.2018.10.033.
    [150] J. Bennazha, M. Zahouily, S. Sebti, A. Boukhari, E.M. Holt, Na2CaP2O7, a new catalyst for Knoevenagel reaction, Catal. Commun. 2 (2001) 101–104. https://doi.org/https://doi.org/10.1016/S1566-7367(01)00015-2.
    [151] C.D. Wagner, Chemical shifts of Auger lines, and the Auger parameter, Faraday Discuss. Chem. Soc. 60 (1975) 291–300. https://doi.org/10.1039/DC9756000291.
    [152] D. Briggs, X-ray photoelectron spectroscopy (XPS), Handb. Adhes. Second Ed. (2005) 621–622. https://doi.org/10.1002/0470014229.ch22.
    [153] S. Benkoula, O. Sublemontier, M. Patanen, C. Nicolas, F. Sirotti, A. Naitabdi, F. Gaie-Levrel, E. Antonsson, D. Aureau, F.-X. Ouf, S.-I. Wada, A. Etcheberry, K. Ueda, C. Miron, Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles, Sci. Rep. 5 (2015) 15088. https://doi.org/10.1038/srep15088.
    [154] D. Kim, D. Park, N. Oh, J. Kim, E.D. Jeong, S.-J. Kim, S. Kim, J.-C. Park, Luminescent Properties of Rare Earth Fully Activated Apatites, LiRE9(SiO4)6O2 (RE = Ce, Eu, and Tb): Site Selective Crystal Field Effect, Inorg. Chem. 54 (2015) 1325–1336. https://doi.org/10.1021/ic502113a.
    [155] P. Wang, D. Wang, J. Song, Z. Mao, Q. Lu, Incorporation of Si–O induced valence state variation of cerium ion and phase evolution in YAG:Ce phosphors for white light emitting diodes, J. Mater. Sci. Mater. Electron. 23 (2012) 1764–1769. https://doi.org/10.1007/s10854-012-0659-z.
    [156] Y. Liu, X. Zhang, Z. Hao, X. Wang, J. Zhang, Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphorvia charge compensation and energy transfer, Chem. Commun. 47 (2011) 10677–10679. https://doi.org/10.1039/C1CC14324G.
    [157] C.-H. Hsu, S. Das, C.-H. Lu, Color-Tunable, Single Phased MgY4Si3O13: Ce3+, Mn2+ Phosphors with Efficient Energy Transfer for White-Light-Emitting Diodes, J. Electrochem. Soc. 159 (2012) J193. https://doi.org/10.1149/2.077205jes.
    [158] S. Som, P. Mitra, V. Kumar, V. Kumar, J.J. Terblans, H.C. Swart, S.K. Sharma, The energy transfer phenomena and colour tunability in Y2O2S:Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications, Dalt. Trans. 43 (2014) 9860–9871. https://doi.org/10.1039/C4DT00349G.
    [159] D.L. Dexter, J.H. Schulman, Theory of Concentration Quenching in Inorganic Phosphors, J. Chem. Phys. 22 (1954) 1063–1070. https://doi.org/10.1063/1.1740265.
    [160] W.-J. Yang, L. Luo, T.-M. Chen, N.-S. Wang, Luminescence and Energy Transfer of Eu- and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED, Chem. Mater. 17 (2005) 3883–3888. https://doi.org/10.1021/cm050638f.
    [161] C. Guo, L. Luan, Y. Xu, F. Gao, L. Liang, White Light–Generation Phosphor Ba2Ca ( BO3 ) 2 : Ce3 + , Mn2 +  for Light-Emitting Diodes, J. Electrochem. Soc. 155 (2008) J310. https://doi.org/10.1149/1.2976215.
    [162] C.-H. Huang, T.-M. Chen, A Novel Single-Composition Trichromatic White-Light Ca3Y(GaO)3(BO3)4:Ce3+,Mn2+,Tb3+ Phosphor for UV-Light Emitting Diodes, J. Phys. Chem. C. 115 (2011) 2349–2355. https://doi.org/10.1021/jp107856d.
    [163] X. Liu, J. Lin, LaGaO3:A (A = Sm3+ and/or Tb3+) as promising phosphors for field emission displays, J. Mater. Chem. 18 (2008) 221–228. https://doi.org/10.1039/B709929K.
    [164] G. Blasse, Energy transfer between inequivalent Eu2+ ions, J. Solid State Chem. 62 (1986) 207–211. https://doi.org/https://doi.org/10.1016/0022-4596(86)90233-1.
    [165] L. Shi, Y. Huang, H.J. Seo, Emission Red Shift and Unusual Band Narrowing of Mn2+ in NaCaPO4 Phosphor, J. Phys. Chem. A. 114 (2010) 6927–6934. https://doi.org/10.1021/jp101772z.
    [166] S. Som, S.K. Sharma, Eu3+/Tb3+-codoped Y2O3nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization, J. Phys. D. Appl. Phys. 45 (2012) 415102. https://doi.org/10.1088/0022-3727/45/41/415102.
    [167] W.-J. Yang, T.-M. Chen, Ce3+∕Eu2+ codoped Ba2ZnS3: A blue radiation-converting phosphor for white light-emitting diodes, Appl. Phys. Lett. 90 (2007) 171908. https://doi.org/10.1063/1.2731685.
    [168] F. Junqin, J. Cao, Z. Li, Z. Li, J. Li, J. Lin, W. Li, Z. Mu, F. Wu, The luminescence properties, energy transfer mechanism of the color tunable and high quantum efficiency LaAl2.03B4O10.54: Ce3+, Tb3+ phosphors, Ceram. Int. 45 (2019) 20316–20322. https://doi.org/https://doi.org/10.1016/j.ceramint.2019.07.003.
    [169] S. Das, A. Amarnath Reddy, G. Vijaya Prakash, Strong green upconversion emission from Er3+–Yb3+ co-doped KCaBO3 phosphor, Chem. Phys. Lett. 504 (2011) 206–210. https://doi.org/https://doi.org/10.1016/j.cplett.2011.02.004.
    [170] X. Zhu, X. Ma, R.N. Ali, B. Zheng, M. Song, A novel and efficient method for the synthesis of strong fluorescence and long afterglow BPO4 phosphors, Ceram. Int. 48 (2022) 8209–8215. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.12.024.
    [171] M. Qu, X. Zhang, X. Mi, Q. Liu, Z. Bai, Novel color tunable garnet phosphor of Tb3+ and Eu3+ co-doped Ca2YZr2Al3O12 with high thermal stability via energy transfer, J. Alloys Compd. 828 (2020) 154398. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.154398.
    [172] N. Ruelle, M.P.-T. Fouassier, Cathodoluminescent Properties and Energy Transfer in Red Calcium Sulfide Phosphors (CaS:Eu, Mn), Jpn. J. Appl. Phys. 31 (1992) 2786. https://doi.org/10.1143/JJAP.31.2786.
    [173] H. Jiao, F. Liao, S. Tian, X. Jing, Luminescent Properties of Eu3 +  and Tb3 +  Activated Zn3Ta2 O 8, J. Electrochem. Soc. 150 (2003) H220. https://doi.org/10.1149/1.1601231.
    [174] P.I. Paulose, G. Jose, V. Thomas, N. V Unnikrishnan, M.K.R. Warrier, Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass, J. Phys. Chem. Solids. 64 (2003) 841–846. https://doi.org/https://doi.org/10.1016/S0022-3697(02)00416-X.
    [175] N. Suriyamurthy, B.S. Panigrahi, Luminescence of BaAl2O4:Mn2+,Ce3+ phosphor, J. Lumin. 127 (2007) 483–488. https://doi.org/https://doi.org/10.1016/j.jlumin.2007.02.038.
    [176] U Caldiño G, On the Ce–Mn clustering in CaF2 in which the Ce3+ → Mn2+ energy transfer occurs, J. Phys. Condens. Matter. 15 (2003) 3821. https://doi.org/10.1088/0953-8984/15/22/316.
    [177] C.-K. Chang, T.-M. Chen, White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mn through energy transfer, Appl. Phys. Lett. 90 (2007) 161901. https://doi.org/10.1063/1.2722670.
    [178] U G Caldino, A F Munoz, J O Rubio, Energy transfer in CaCl2:Eu:Mn crystals, J. Phys. Condens. Matter. 5 (1993) 2195. https://doi.org/10.1088/0953-8984/5/14/016.
    [179] R. Martínez-Martínez, A.C. Lira, A. Speghini, C. Falcony, U. Caldiño, Blue-yellow photoluminescence from Ce3+→Dy3+ energy transfer in HfO2:Ce3+:Dy3+ films deposited by ultrasonic spray pyrolysis, J. Alloys Compd. 509 (2011) 3160–3165. https://doi.org/https://doi.org/10.1016/j.jallcom.2010.11.203.
    [180] Y. Wei, L. Cao, L. Lv, G. Li, J. Hao, J. Gao, C. Su, C.C. Lin, H.S. Jang, P. Dang, J. Lin, Highly Efficient Blue Emission and Superior Thermal Stability of BaAl12O19:Eu2+ Phosphors Based on Highly Symmetric Crystal Structure, Chem. Mater. 30 (2018) 2389–2399. https://doi.org/10.1021/acs.chemmater.8b00464.
    [181] C. Liu, Z. Qi, C.-G. Ma, P. Dorenbos, D. Hou, S. Zhang, X. Kuang, J. Zhang, H. Liang, High Light Yield of Sr8(Si4O12)Cl8:Eu2+ under X-ray Excitation and Its Temperature-Dependent Luminescence Characteristics, Chem. Mater. 26 (2014) 3709–3715. https://doi.org/10.1021/cm501055k.
    [182] C.C. Lin, A. Meijerink, R.-S. Liu, Critical Red Components for Next-Generation White LEDs, J. Phys. Chem. Lett. 7 (2016) 495–503. https://doi.org/10.1021/acs.jpclett.5b02433.
    [183] M.L. Meena, S. Som, R.K. Singh, C.H. Lu, Synthesis, spectroscopic characterization and estimation of Judd-Ofelt parameters for Dy3+ activated Li2MgZrO4 double perovskite materials, Polyhedron. 177 (2020) 114322. https://doi.org/10.1016/j.poly.2019.114322.
    [184] S. Dutta, S. Som, M. Lal Meena, R. Chaurasiya, T.-M. Chen, Multisite-Occupancy-Driven Intense Narrow-Band Blue Emission from Sr5SiO4Cl6:Eu2+ Phosphor with Excellent Stability and Color Performance, Inorg. Chem. 59 (2020) 1928–1939. https://doi.org/10.1021/acs.inorgchem.9b03222.
    [185] S.-J. Dai, Dan Zhao, R.-J. Zhang, L. Jia, Q.-X. Yao, Enhancing luminescence intensity and improving thermostability of red phosphors Li3Ba2La3(WO4)8:Eu3+ by co-doping with Sm3+ ions, J. Alloys Compd. 891 (2022) 161973. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.161973.
    [186] Q. Zhang, X. Wang, X. Ding, Y. Wang, A Potential Red-Emitting Phosphor BaZrGe3O9:Eu3+ for WLED and FED Applications: Synthesis, Structure, and Luminescence Properties, Inorg. Chem. 56 (2017) 6990–6998. https://doi.org/10.1021/acs.inorgchem.7b00591.
    [187] X. Zhang, J. Zhang, M. Gong, Synthesis and luminescent properties of UV-excited thermal stable red-emitting phosphor Ba3Lu(PO4)3: Eu3+ for NUV LED, Opt. Mater. (Amst). 36 (2014) 850–853. https://doi.org/https://doi.org/10.1016/j.optmat.2013.12.024.
    [188] Y. Hua, J.S. Yu, Warm white emission of LaSr2F7:Dy3+/Eu3+ NPs with excellent thermal stability for indoor illumination, J. Mater. Sci. Technol. 54 (2020) 230–239. https://doi.org/https://doi.org/10.1016/j.jmst.2020.02.066.
    [189] S. Ye, J. Ding, Q. Wu, MMCT-induced high-bright yellow light-emitting phosphor Bi3+-activated Ba2YGaO5 used for WLED, Chem. Eng. J. 428 (2022) 131238. https://doi.org/https://doi.org/10.1016/j.cej.2021.131238.
    [190] Y. Chen, Y. Lan, D. wang, G. Zhang, W. Peng, Y. Chen, X. He, Q. Zeng, J. Wang, Luminescence properties of Gd2MoO6:Eu3+ nanophosphors for WLEDs, Dalt. Trans. 50 (2021) 6281–6289. https://doi.org/10.1039/D1DT00547B.
    [191] Y. Hua, W. Ran, J.S. Yu, Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications, Chem. Eng. J. 406 (2021) 127154. https://doi.org/https://doi.org/10.1016/j.cej.2020.127154.
    [192] H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, C. Li, Sr1.7Zn0.3CeO4: Eu3+ Novel Red-Emitting Phosphors: Synthesis and Photoluminescence Properties, ACS Appl. Mater. Interfaces. 6 (2014) 3163–3169. https://doi.org/10.1021/am4041493.
    [193] J. Li, Q. Liang, Y. Cao, J. Yan, J. Zhou, Y. Xu, L. Dolgov, Y. Meng, J. Shi, M. Wu, Layered Structure Produced Nonconcentration Quenching in a Novel Eu3+-Doped Phosphor, ACS Appl. Mater. Interfaces. 10 (2018) 41479–41486. https://doi.org/10.1021/acsami.8b13759.
    [194] Y. Zhu, G. Zheng, Z. Dai, L. Zhang, J. Mu, Core–Shell Structure and Luminescence of SrMoO4:Eu3+ (10%) Phosphors, J. Mater. Sci. Technol. 32 (2016) 1361–1371. https://doi.org/https://doi.org/10.1016/j.jmst.2016.04.018.
    [195] Q. Dai, M.E. Foley, C.J. Breshike, A. Lita, G.F. Strouse, Ligand-Passivated Eu:Y2O3 Nanocrystals as a Phosphor for White Light Emitting Diodes, J. Am. Chem. Soc. 133 (2011) 15475–15486. https://doi.org/10.1021/ja2039419.
    [196] K.-W. Huang, W.-T. Chen, C.-I. Chu, S.-F. Hu, H.-S. Sheu, B.-M. Cheng, J.-M. Chen, R.-S. Liu, Controlling The Activator Site To Tune Europium Valence in Oxyfluoride Phosphors, Chem. Mater. 24 (2012) 2220–2227. https://doi.org/10.1021/cm3011327.
    [197] J. Zhong, D. Chen, H. Xu, W. Zhao, J. Sun, Z. Ji, Red-emitting CaLa4(SiO4)3O:Eu3+ phosphor with superior thermal stability and high quantum efficiency for warm w-LEDs, J. Alloys Compd. 695 (2017) 311–318. https://doi.org/https://doi.org/10.1016/j.jallcom.2016.10.211.
    [198] R. Cao, H. Xiao, F. Zhang, Z. Luo, T. Chen, W. Li, P. Liu, G. Zheng, Red-emitting phosphor Na2Ca2Nb4O13:Eu3+ for LEDs: Synthesis and luminescence properties, J. Lumin. 208 (2019) 350–355. https://doi.org/https://doi.org/10.1016/j.jlumin.2018.12.064.
    [199] P. Sun, Y. Zhong, Z. Li, B. Liu, T. Li, B. Deng, R. Yu, Luminescence properties of novel Eu3+-doped tantalate NaCaTiTaO6 red-emitting phosphors for solid-state lighting, J. Am. Ceram. Soc. 102 (2019) 6077–6086. https://doi.org/https://doi.org/10.1111/jace.16478.
    [200] J. Li, X. Liu, Y. Liu, Luminescence investigation of a novel red-emitting Sr3NaSbO6:Eu3+ phosphor, Optik (Stuttg). 242 (2021) 166809. https://doi.org/https://doi.org/10.1016/j.ijleo.2021.166809.
    [201] M.L. Meena, S. Som, R.K. Singh, C.-H. Lu, Synthesis, spectroscopic characterization and estimation of Judd-Ofelt parameters for Dy3+ activated Li2MgZrO4 double perovskite materials, Polyhedron. 177 (2020) 114322. https://doi.org/https://doi.org/10.1016/j.poly.2019.114322.
    [202] B. Yu, Y. Li, Y. Wang, L. Geng, Double-site Eu3+ occupation in the langbeinite-type phosphate phosphor toward adjustable emission for pc-WLEDs, J. Alloys Compd. 874 (2021) 159862. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.159862.
    [203] Y.-S. Tang, S.-F. Hu, C.C. Lin, N.C. Bagkar, R.-S. Liu, Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes, Appl. Phys. Lett. 90 (2007) 151108. https://doi.org/10.1063/1.2721846.
    [204] M.T. Tran, N. Tu, N. V Quang, D.H. Nguyen, L.T.H. Thu, D.Q. Trung, P.T. Huy, Excellent thermal stability and high quantum efficiency orange-red-emitting AlPO4:Eu3+ phosphors for WLED application, J. Alloys Compd. 853 (2021) 156941. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.156941.
    [205] B. Zheng, J. Wang, Z. Pan, X. Wang, S. Liu, S. Ding, L. Lang, An efficient metal-free catalyst derived from waste lotus seedpod for oxygen reduction reaction, J. Porous Mater. 27 (2020) 637–646. https://doi.org/10.1007/s10934-019-00846-3.
    [206] D. Kim, S.-C. Kim, J.-S. Bae, S. Kim, S.-J. Kim, J.-C. Park, Eu2+-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu2+ (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect, Inorg. Chem. 55 (2016) 8359–8370. https://doi.org/10.1021/acs.inorgchem.6b00637.
    [207] L. Li, G. Li, Y. Che, W. Su, Valence Characteristics and Structural Stabilities of the Electrolyte Solid Solutions Ce1-xRExO2-δ (RE = Eu, Tb) by High Temperature and High Pressure, Chem. Mater. 12 (2000) 2567–2574. https://doi.org/10.1021/cm990803p.
    [208] P. Dorenbos, The Eu3+ charge transfer energy and the relation with the band gap of compounds, J. Lumin. 111 (2005) 89–104. https://doi.org/https://doi.org/10.1016/j.jlumin.2004.07.003.
    [209] S. Wang, Y. Xu, T. Chen, W. Jiang, J. Liu, X. Zhang, W. Jiang, L. Wang, A red phosphor LaSc3(BO3)4:Eu3+ with zero-thermal-quenching and high quantum efficiency for LEDs, Chem. Eng. J. 404 (2021) 125912. https://doi.org/https://doi.org/10.1016/j.cej.2020.125912.
    [210] J. Luo, Y. Wang, S. Chen, S. Li, Y. Zhao, J. Chen, Z. Hu, Y. Li, H. Wang, Bin Deng, R. Yu, Surface modification of Mg2InSbO6:Eu3+ phosphors and applications for white light-emitting diodes and visualization of latent fingerprint, J. Alloys Compd. 892 (2022) 162049. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.162049.
    [211] H.-Y.D. Ke, E.R. Birnbaum, Many-body nonradiative energy transfer in a crystalline europium (III) EDTA complex, J. Lumin. 63 (1995) 9–17. https://doi.org/https://doi.org/10.1016/0022-2313(94)00060-P.
    [212] Q. Meng, B. Chen, W. Xu, Y. Yang, X. Zhao, W. Di, S. Lu, X. Wang, J. Sun, L. Cheng, T. Yu, Y. Peng, Size-dependent excitation spectra and energy transfer in Tb3+-doped Y2O3 nanocrystalline, J. Appl. Phys. 102 (2007) 93505. https://doi.org/10.1063/1.2803502.
    [213] Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, Q. Meng, Concentration-dependent luminescence and energy transfer of flower-like Y2(MoO4)3:Dy3+ phosphor, J. Alloys Compd. 509 (2011) 6096–6101. https://doi.org/https://doi.org/10.1016/j.jallcom.2011.03.034.
    [214] S. Dutta, S. Som, S.K. Sharma, Luminescence and photometric characterization of K+ compensated CaMoO4:Dy3+ nanophosphors, Dalt. Trans. 42 (2013) 9654–9661. https://doi.org/10.1039/C3DT50780G.
    [215] J.-Y. Yang, S. Dutta, T.-M. Chen, La6Si4S17:Ce3+: luminescence and lighting applications of a novel green-emitting phosphor, Dalt. Trans. 47 (2018) 14870–14874. https://doi.org/10.1039/C8DT02759E.
    [216] Y.-F. Wu, Y.-T. Nien, Y.-J. Wang, I.-G. Chen, Enhancement of Photoluminescence and Color Purity of CaTiO3:Eu Phosphor by Li Doping, J. Am. Ceram. Soc. 95 (2012) 1360–1366. https://doi.org/https://doi.org/10.1111/j.1551-2916.2011.04967.x.
    [217] B.R. Judd, Optical Absorption Intensities of Rare-Earth Ions, Phys. Rev. 127 (1962) 750–761. https://doi.org/10.1103/PhysRev.127.750.
    [218] G.S. Ofelt, Intensities of Crystal Spectra of Rare‐Earth Ions, J. Chem. Phys. 37 (1962) 511–520. https://doi.org/10.1063/1.1701366.
    [219] C.A. Kodaira, H.F. Brito, O.L. Malta, O.A. Serra, Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method, J. Lumin. 101 (2003) 11–21. https://doi.org/https://doi.org/10.1016/S0022-2313(02)00384-8.
    [220] F. Du, Y. Nakai, T. Tsuboi, Y. Huang, H.J. Seo, Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu), J. Mater. Chem. 21 (2011) 4669–4678. https://doi.org/10.1039/C0JM03324C.
    [221] X. Huang, B. Li, H. Guo, Highly efficient Eu3+-activated K2Gd(WO4)(PO4) red-emitting phosphors with superior thermal stability for solid-state lighting, Ceram. Int. 43 (2017) 10566–10571. https://doi.org/https://doi.org/10.1016/j.ceramint.2017.05.123.
    [222] C. Ji, T.-H. Huang, Z. Huang, J. Wen, W. Xie, X. Tian, T. Wu, H. He, Y. Peng, High thermal stability and colour saturation red-emitting Ba2AGe2O7: Eu3+ (A = Mg, Zn) phosphors for WLEDs, J. Lumin. 216 (2019) 116734. https://doi.org/https://doi.org/10.1016/j.jlumin.2019.116734.
    [223] T. Sakthivel, G. Annadurai, R. Vijayakumar, X. Huang, Synthesis, luminescence properties and thermal stability of Eu3+-activated Na2Y2B2O7 red phosphors excited by near-UV light for pc-WLEDs, J. Lumin. 205 (2019) 129–135. https://doi.org/https://doi.org/10.1016/j.jlumin.2018.09.008.
    [224] P. Du, J.S. Yu, Synthesis and luminescent properties of Eu3+-activated Na0.5Gd0.5MoO4: A strong red-emitting phosphor for LED and FED applications, J. Lumin. 179 (2016) 451–456. https://doi.org/https://doi.org/10.1016/j.jlumin.2016.07.045.
    [225] C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates, Color Res. Appl. 17 (1992) 142–144. https://doi.org/https://doi.org/10.1002/col.5080170211.
    [226] W. Davis, Y. Ohno, Approaches to color rendering measurement, J. Mod. Opt. 56 (2009) 1412–1419. https://doi.org/10.1080/09500340903023733.
    [227] Z. Zhang, J. Li, N. Yang, Q. Liang, Y. Xu, S. Fu, J. Yan, J. Zhou, J. Shi, M. Wu, A novel multi-center activated single-component white light-emitting phosphor for deep UV chip-based high color-rendering WLEDs, Chem. Eng. J. 390 (2020) 124601. https://doi.org/https://doi.org/10.1016/j.cej.2020.124601.
    [228] P. Pust, P.J. Schmidt, W. Schnick, A revolution in lighting, Nat. Mater. 14 (2015) 454–458. https://doi.org/10.1038/nmat4270.
    [229] Y. Fu, X. Wang, M. Peng, Tunable photoluminescence from YTaO4:Bi3+ for ultraviolet converted pc-WLED with high chromatic stability, J. Mater. Chem. C. 8 (2020) 6079–6085. https://doi.org/10.1039/C9TC06777A.
    [230] P. Strobel, V. Weiler, C. Hecht, P.J. Schmidt, W. Schnick, Luminescence of the Narrow-Band Red Emitting Nitridomagnesosilicate Li2(Ca1–xSrx)2[Mg2Si2N6]:Eu2+ (x = 0–0.06), Chem. Mater. 29 (2017) 1377–1383. https://doi.org/10.1021/acs.chemmater.6b05196.
    [231] J. Han, L. Li, M. Peng, B. Huang, F. Pan, F. Kang, L. Li, J. Wang, B. Lei, Toward Bi3+ Red Luminescence with No Visible Reabsorption through Manageable Energy Interaction and Crystal Defect Modulation in Single Bi3+-Doped ZnWO4 Crystal, Chem. Mater. 29 (2017) 8412–8424. https://doi.org/10.1021/acs.chemmater.7b02979.
    [232] D. Chen, Y. Zhou, J. Zhong, A review on Mn4+ activators in solids for warm white light-emitting diodes, RSC Adv. 6 (2016) 86285–86296. https://doi.org/10.1039/C6RA19584A.
    [233] P.O. Maksimchuk, S.L. Yefimova, K.O. Hubenko, V. V Omielaieva, N.S. Kavok, V.K. Klochkov, O. V Sorokin, Y. V Malyukin, Dark Reactive Oxygen Species Generation in ReVO4:Eu3+ (Re = Gd, Y) Nanoparticles in Aqueous Solutions, J. Phys. Chem. C. 124 (2020) 3843–3850. https://doi.org/10.1021/acs.jpcc.9b10143.
    [234] Y. Zhuo, S. Hariyani, E. Armijo, Z. Abolade Lawson, J. Brgoch, Evaluating Thermal Quenching Temperature in Eu3+-Substituted Oxide Phosphors via Machine Learning, ACS Appl. Mater. Interfaces. 12 (2020) 5244–5250. https://doi.org/10.1021/acsami.9b16065.
    [235] J. Zhang, G. Cai, W. Wang, L. Ma, X. Wang, Z. Jin, Tuning of Emission by Eu3+ Concentration in a Pyrophosphate: the Effect of Local Symmetry, Inorg. Chem. 59 (2020) 2241–2247. https://doi.org/10.1021/acs.inorgchem.9b02949.
    [236] Y. Luo, Z. Liu, H.T. Wong, L. Zhou, K.-L. Wong, K.K. Shiu, P.A. Tanner, Energy Transfer between Tb3+ and Eu3+ in LaPO4: Pulsed versus Switched-off Continuous Wave Excitation, Adv. Sci. 6 (2019) 1900487. https://doi.org/https://doi.org/10.1002/advs.201900487.
    [237] M.E. Foley, R.W. Meulenberg, J.R. McBride, G.F. Strouse, Eu3+-Doped ZnB2O4 (B = Al3+, Ga3+) Nanospinels: An Efficient Red Phosphor, Chem. Mater. 27 (2015) 8362–8374. https://doi.org/10.1021/acs.chemmater.5b03789.
    [238] J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, Z. Ji, Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes, J. Mater. Chem. C. 3 (2015) 4500–4510. https://doi.org/10.1039/C5TC00708A.
    [239] P. Du, Q. Meng, X. Wang, Q. Zhu, X. Li, X. Sun, J.-G. Li, Sol-gel processing of Eu3+ doped Li6CaLa2Nb2O12 garnet for efficient and thermally stable red luminescence under near-ultraviolet/blue light excitation, Chem. Eng. J. 375 (2019) 121937. https://doi.org/https://doi.org/10.1016/j.cej.2019.121937.
    [240] P. Du, X. Huang, J.S. Yu, Facile synthesis of bifunctional Eu3+-activated NaBiF4 red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays, Chem. Eng. J. 337 (2018) 91–100. https://doi.org/https://doi.org/10.1016/j.cej.2017.12.063.
    [241] E.A. Abou Neel, W. Chrzanowski, J.C. Knowles, Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses, Acta Biomater. 4 (2008) 523–534. https://doi.org/https://doi.org/10.1016/j.actbio.2007.11.007.
    [242] G. Zhu, Z. Li, C. Wang, X. Wang, F. Zhou, M. Gao, S. Xin, Y. Wang, Highly Eu3+ ions doped novel red emission solid solution phosphors Ca18Li3(Bi,Eu)(PO4)14: structure design, characteristic luminescence and abnormal thermal quenching behavior investigation, Dalt. Trans. 48 (2019) 1624–1632. https://doi.org/10.1039/C8DT04047H.
    [243] T.-S. Chan, R.-S. Liu, I. Baginskiy, Synthesis, Crystal Structure, and Luminescence Properties of a Novel Green-Yellow Emitting Phosphor LiZn1−xPO4:Mnx for Light Emitting Diodes, Chem. Mater. 20 (2008) 1215–1217. https://doi.org/10.1021/cm7028867.
    [244] Z. Wu, J. Liu, M. Gong, Thermally stable luminescence of SrMg2(PO4)2: Eu2+ phosphor for white light NUV light-emitting diodes, Chem. Phys. Lett. 466 (2008) 88–90. https://doi.org/https://doi.org/10.1016/j.cplett.2008.10.034.
    [245] S. Som, A.K. Kunti, V. Kumar, V. Kumar, S. Dutta, M. Chowdhury, S.K. Sharma, J.J. Terblans, H.C. Swart, Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu3+ in CaTiO3 for red emission in display application, J. Appl. Phys. 115 (2014) 193101. https://doi.org/10.1063/1.4876316.
    [246] S. Som, V. Kumar, V. Kumar, M. Gohain, A. Pandey, M.M. Duvenhage, J.J. Terblans, B.C.B. Bezuindenhoud, H.C. Swart, Dopant distribution and influence of sonication temperature on the pure red light emission of mixed oxide phosphor for solid state lighting, Ultrason. Sonochem. 28 (2016) 79–89. https://doi.org/https://doi.org/10.1016/j.ultsonch.2015.07.003.
    [247] I. Abrahams, G.E. Hawkes, A. Ahmed, T. Di Cristina, D.Z. Demetriou, G.I. Ivanova, Structures of the chain metaphosphates NaM(PO3)3 (M = Ca or Sr), Magn. Reson. Chem. 46 (2008) 316–322. https://doi.org/https://doi.org/10.1002/mrc.2161.
    [248] L.X. Yang, X. Xu, L.Y. Hao, Y.F. Wang, L.J. Yin, X.F. Yang, W. He, Q.X. Li, Optimization mechanism of CaSi2O2N2 : Eu2+phosphor by La3+ion doping, J. Phys. D. Appl. Phys. 44 (2011) 355403. https://doi.org/10.1088/0022-3727/44/35/355403.
    [249] B.-S. Tsai, Y.-H. Chang, Y.-C. Chen, Synthesis and Luminescent Properties of MgIn[sub 2−x]Ga[sub x]O[sub 4]:Eu[sup 3+] Phosphors, Electrochem. Solid-State Lett. 8 (2005) H55. https://doi.org/10.1149/1.1921128.
    [250] C.K. Jørgensen, Electron transfer spectra of lanthanide complexes, Mol. Phys. 5 (1962) 271–277. https://doi.org/10.1080/00268976200100291.
    [251] S. Som, S. Das, S. Dutta, H.G. Visser, M.K. Pandey, P. Kumar, R.K. Dubey, S.K. Sharma, Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis, RSC Adv. 5 (2015) 70887–70898. https://doi.org/10.1039/C5RA13247A.
    [252] Y. Sun, L. Qi, M. Lee, B.I. Lee, W.D. Samuels, G.J. Exarhos, Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution, J. Lumin. 109 (2004) 85–91. https://doi.org/https://doi.org/10.1016/j.jlumin.2004.01.085.
    [253] J.M.F. van Dijk, M.F.H. Schuurmans, On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare‐earth ions, J. Chem. Phys. 78 (1983) 5317–5323. https://doi.org/10.1063/1.445485.
    [254] B. Deva Prasad Raju, C. Madhukar Reddy, Structural and optical investigations of Eu3+ ions in lead containing alkali fluoroborate glasses, Opt. Mater. (Amst). 34 (2012) 1251–1260. https://doi.org/https://doi.org/10.1016/j.optmat.2012.01.027.
    [255] Y.-C. Fang, S.-Y. Chu, P.-C. Kao, Y.-M. Chuang, Z.-L. Zeng, Energy Transfer and Thermal Quenching Behaviors of CaLa[sub 2](MoO[sub 4])[sub 4]:Sm[sup 3+],Eu[sup 3+] Red Phosphors, J. Electrochem. Soc. 158 (2011) J1. https://doi.org/10.1149/1.3518782.
    [256] X. Liu, C. Li, Z. Quan, Z. Cheng, J. Lin, Tunable Luminescence Properties of CaIn2O4:Eu3+ Phosphors, J. Phys. Chem. C. 111 (2007) 16601–16607. https://doi.org/10.1021/jp074868o.
    [257] Y.-C. Chang, C.-H. Liang, S.-A. Yan, Y.-S. Chang, Synthesis and Photoluminescence Characteristics of High Color Purity and Brightness Li3Ba2Gd3(MoO4)8:Eu3+ Red Phosphors, J. Phys. Chem. C. 114 (2010) 3645–3652. https://doi.org/10.1021/jp9084124.
    [258] R. Nagaraj, A. Raja, S. Ranjith, Synthesis and luminescence properties of novel red-emitting Eu3+ ions doped silicate phosphors for photonic applications, J. Alloys Compd. 827 (2020) 154289. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.154289.
    [259] M.F.H. Schuurmans, J.M.F. van Dijk, On radiative and non-radiative decay times in the weak coupling limit, Phys. B+C. 123 (1984) 131–155. https://doi.org/https://doi.org/10.1016/0378-4363(84)90117-7.
    [260] G. Zhu, Z. Ci, Y. Shi, M. Que, Q. Wang, Y. Wang, Synthesis, crystal structure and luminescence characteristics of a novel red phosphor Ca19Mg2(PO4)14:Eu3+ for light emitting diodes and field emission displays, J. Mater. Chem. C. 1 (2013) 5960–5969. https://doi.org/10.1039/C3TC31263A.
    [261] V. Kumar, S. Som, V. Kumar, V. Kumar, O.M. Ntwaeaborwa, E. Coetsee, H.C. Swart, Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications, Chem. Eng. J. 255 (2014) 541–552. https://doi.org/https://doi.org/10.1016/j.cej.2014.06.027.
    [262] W.H. Baur, The geometry of polyhedral distortions. Predictive relationships for the phosphate group, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 30 (1974) 1195–1215. https://doi.org/10.1107/s0567740874004560.
    [263] R. Keith, G.G. V., R.P. H., Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra, Science (80-. ). 172 (1971) 567–570. https://doi.org/10.1126/science.172.3983.567.
    [264] M. Hermus, P.-C. Phan, A.C. Duke, J. Brgoch, Tunable Optical Properties and Increased Thermal Quenching in the Blue-Emitting Phosphor Series: Ba2(Y1–xLux)5B5O17:Ce3+ (x = 0–1), Chem. Mater. 29 (2017) 5267–5275. https://doi.org/10.1021/acs.chemmater.7b01416.
    [265] V. Bachmann, A. Meijerink, C. Ronda, Luminescence properties of SrSi2AlO2N3 doped with divalent rare-earth ions, J. Lumin. 129 (2009) 1341–1346. https://doi.org/https://doi.org/10.1016/j.jlumin.2009.06.023.
    [266] S. Dutta, S. Som, M.L. Meena, R. Chaurasiya, T.M. Chen, Multisite-Occupancy-Driven Intense Narrow-Band Blue Emission from Sr5SiO4Cl6:Eu2+ Phosphor with Excellent Stability and Color Performance, Inorg. Chem. 59 (2020) 1928–1939. https://doi.org/10.1021/acs.inorgchem.9b03222.
    [267] L.N. Ferguson, The Synthesis of Aromatic Aldehydes., Chem. Rev. 38 (1946) 227–254. https://doi.org/10.1021/cr60120a002.
    [268] Q.A. Acton, Aldehydes—Advances in Research and Application: 2013 Edition, ScholarlyEditions, 2013. https://books.google.com.tw/books?id=4jHxN2e4hGgC.
    [269] K.S. Fritz, D.R. Petersen, An overview of the chemistry and biology of reactive aldehydes, Free Radic. Biol. Med. 59 (2013) 85–91. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2012.06.025.
    [270] B.M. Trost, S.L. Schreiber, COMPREHENSIVE ORGANIC SYNTHESIS, 1993.
    [271] L.J. Gooßen, K. Ghosh, New Pd-catalyzed selective reduction of carboxylic acids to aldehydes, Chem. Commun. (2002) 836–837. https://doi.org/10.1039/B201577N.
    [272] K. Nagayama, I. Shimizu, A. Yamamoto, Direct hydrogenation of carboxylic acids to corresponding aldehydes catalyzed by palladium complexes, Bull. Chem. Soc. Jpn. 74 (2001) 1803–1815. https://doi.org/10.1246/bcsj.74.1803.
    [273] L.J. Gooßen, B.A. Khan, T. Fett, M. Treu, Low-Pressure Hydrogenation of Arenecarboxylic Acids to Aryl Aldehydes, Adv. Synth. Catal. 352 (2010) 2166–2170. https://doi.org/https://doi.org/10.1002/adsc.201000418.
    [274] C.O. Kangani, D.E. Kelley, B.W. Day, One-pot synthesis of aldehydes or ketones from carboxylic acids via in situ generation of Weinreb amides using the Deoxo-Fluor reagent, Tetrahedron Lett. 47 (2006) 6289–6292. https://doi.org/https://doi.org/10.1016/j.tetlet.2006.06.121.
    [275] K. Miyamoto, Y. Motoyama, H. Nagashima, Selective Reduction of Carboxylic Acids to Aldehydes by a Ruthenium-catalyzed Reaction with 1,2-Bis(dimethylsilyl)benzene, Chem. Lett. 41 (2012) 229–231. https://doi.org/10.1246/cl.2012.229.
    [276] D. Bézier, S. Park, M. Brookhart, Selective Reduction of Carboxylic Acids to Aldehydes Catalyzed by B(C6F5)3, Org. Lett. 15 (2013) 496–499. https://doi.org/10.1021/ol303296a.
    [277] P.M. Rajaitha, S. Hajra, M. Sahu, K. Mistewicz, B. Toroń, R. Abolhassani, S. Panda, Y.K. Mishra, H.J. Kim, Unraveling highly efficient nanomaterial photocatalyst for pollutant removal: a comprehensive review and future progress, Mater. Today Chem. 23 (2022) 100692. https://doi.org/https://doi.org/10.1016/j.mtchem.2021.100692.
    [278] S. Hafeez, E. Harkou, A. Spanou, S.M. Al-Salem, A. Villa, N. Dimitratos, G. Manos, A. Constantinou, Review on recent progress and reactor set-ups for hydrogen production from formic acid decomposition, Mater. Today Chem. 26 (2022) 101120. https://doi.org/https://doi.org/10.1016/j.mtchem.2022.101120.
    [279] A.P. Davis, Reduction of Carboxylic Acids to Aldehydes by Other Methods, in: B.M. Trost, I.B.T.-C.O.S. Fleming (Eds.), Pergamon, Oxford, 1991: pp. 283–305. https://doi.org/https://doi.org/10.1016/B978-0-08-052349-1.00228-6.
    [280] T. Fujisawa, T. Mori, S. Tsuge, T. Sato, Direct and chemoselective conversion of carboxylic acids into aldehydes, Tetrahedron Lett. 24 (1983) 1543–1546. https://doi.org/https://doi.org/10.1016/S0040-4039(00)81704-9.
    [281] E. Mosettig, The Synthesis of Aldehydes from Carboxylic Acids, Org. React. (2011) 218–257. https://doi.org/https://doi.org/10.1002/0471264180.or008.05.
    [282] C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis, Chem. Rev. 113 (2013) 5322–5363. https://doi.org/10.1021/cr300503r.
    [283] M.H. Shaw, J. Twilton, D.W.C. MacMillan, Photoredox Catalysis in Organic Chemistry, J. Org. Chem. 81 (2016) 6898–6926. https://doi.org/10.1021/acs.joc.6b01449.
    [284] N.A. Romero, D.A. Nicewicz, Organic Photoredox Catalysis, Chem. Rev. 116 (2016) 10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057.
    [285] X.-Q. Hu, Z.-K. Liu, Y.-X. Hou, Y. Gao, Single Electron Activation of Aryl Carboxylic Acids, IScience. 23 (2020) 101266. https://doi.org/https://doi.org/10.1016/j.isci.2020.101266.
    [286] J. Xuan, Z.-G. Zhang, W.-J. Xiao, Visible-Light-Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives, Angew. Chemie Int. Ed. 54 (2015) 15632–15641. https://doi.org/https://doi.org/10.1002/anie.201505731.
    [287] M. Zhang, X.-A. Yuan, C. Zhu, J. Xie, Deoxygenative Deuteration of Carboxylic Acids with D2O, Angew. Chemie Int. Ed. 58 (2019) 312–316. https://doi.org/https://doi.org/10.1002/anie.201811522.
    [288] E.E. Stache, A.B. Ertel, T. Rovis, A.G. Doyle, Generation of Phosphoranyl Radicals via Photoredox Catalysis Enables Voltage–Independent Activation of Strong C–O Bonds, ACS Catal. 8 (2018) 11134–11139. https://doi.org/10.1021/acscatal.8b03592.
    [289] M. Zhang, N. Li, X. Tao, R. Ruzi, S. Yu, C. Zhu, Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis, Chem. Commun. 53 (2017) 10228–10231. https://doi.org/10.1039/C7CC05570F.
    [290] J. Zheng, S. Chevance, C. Darcel, J.-B. Sortais, Selective reduction of carboxylic acids to aldehydes through manganese catalysed hydrosilylation, Chem. Commun. 49 (2013) 10010–10012. https://doi.org/10.1039/C3CC45349A.
    [291] D. Wei, R. Buhaibeh, Y. Canac, J.-B. Sortais, Rhenium-Catalyzed Reduction of Carboxylic Acids with Hydrosilanes, Org. Lett. 21 (2019) 7713–7716. https://doi.org/10.1021/acs.orglett.9b02449.
    [292] Q. Xiao, S. Sarina, E.R. Waclawik, J. Jia, J. Chang, J.D. Riches, H. Wu, Z. Zheng, H. Zhu, Alloying Gold with Copper Makes for a Highly Selective Visible-Light Photocatalyst for the Reduction of Nitroaromatics to Anilines, ACS Catal. 6 (2016) 1744–1753. https://doi.org/10.1021/acscatal.5b02643.
    [293] K. Tsutsumi, F. Uchikawa, K. Sakai, K. Tabata, Photoinduced Reduction of Nitroarenes Using a Transition-Metal-Loaded Silicon Semiconductor under Visible Light Irradiation, ACS Catal. 6 (2016) 4394–4398. https://doi.org/10.1021/acscatal.6b00886.
    [294] S. Xu, J. Tang, Q. Zhou, J. Du, H. Li, Interfacing Anatase with Carbon Layers for Photocatalytic Nitroarene Hydrogenation, ACS Sustain. Chem. Eng. 7 (2019) 16190–16199. https://doi.org/10.1021/acssuschemeng.9b03149.
    [295] D. Wang, D. Astruc, The Golden Age of Transfer Hydrogenation, Chem. Rev. 115 (2015) 6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203.
    [296] S.P. Cummings, T.-N. Le, G.E. Fernandez, L.G. Quiambao, B.J. Stokes, Tetrahydroxydiboron-Mediated Palladium-Catalyzed Transfer Hydrogenation and Deuteriation of Alkenes and Alkynes Using Water as the Stoichiometric H or D Atom Donor, J. Am. Chem. Soc. 138 (2016) 6107–6110. https://doi.org/10.1021/jacs.6b02132.
    [297] F. Zhang, J. Li, H. Wang, Y. Li, Y. Liu, Q. Qian, X. Jin, X. Wang, J. Zhang, G. Zhang, Realizing synergistic effect of electronic modulation and nanostructure engineering over graphitic carbon nitride for highly efficient visible-light H2 production coupled with benzyl alcohol oxidation, Appl. Catal. B Environ. 269 (2020) 118772. https://doi.org/https://doi.org/10.1016/j.apcatb.2020.118772.
    [298] S. Lin, H. Huang, T. Ma, Y. Zhang, Photocatalytic Oxygen Evolution from Water Splitting, Adv. Sci. 8 (2021) 2002458. https://doi.org/https://doi.org/10.1002/advs.202002458.
    [299] R.C. Ropp, Phosphors Based on Rare Earth Phosphates, J. Electrochem. Soc. 115 (1968) 841. https://doi.org/10.1149/1.2411445.
    [300] R. Achagar, A. Elmakssoudi, M. Dakir, A. Elamrani, Y. Zouheir, M. Zahouily, J. Jamaleddine, A Green and Efficient Protocol for the Synthesis of Phenylhydrazone Derivatives Catalyzed by Nanostructured Diphosphate Na2CaP2O7 and Screening of Their Antibacterial Activity, ChemistrySelect. 6 (2021) 1366–1371. https://doi.org/https://doi.org/10.1002/slct.202004671.
    [301] A. Solhy, A. Elmakssoudi, R. Tahir, M. Karkouri, M. Larzek, M. Bousmina, M. Zahouily, Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7, Green Chem. 12 (2010) 2261–2267. https://doi.org/10.1039/C0GC00387E.
    [302] L. Grigorjeva, D. Millers, K. Smits, D. Jankovica, L. Pukina, Characterization of hydroxyapatite by time-resolved luminescence and FTIR spectroscopy, IOP Conf. Ser. Mater. Sci. Eng. 49 (2013) 12005. https://doi.org/10.1088/1757-899x/49/1/012005.
    [303] A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, M. Wisniewski, XPS and NMR studies of phosphoric acid activated carbons, Carbon N. Y. 46 (2008) 2113–2123. https://doi.org/https://doi.org/10.1016/j.carbon.2008.09.010.
    [304] F. Mercier, C. Alliot, L. Bion, N. Thromat, P. Toulhoat, XPS study of Eu(III) coordination compounds: Core levels binding energies in solid mixed-oxo-compounds EumXxOy, J. Electron Spectros. Relat. Phenomena. 150 (2006) 21–26. https://doi.org/https://doi.org/10.1016/j.elspec.2005.08.003.
    [305] S.J. Park, M.H. Joo, J.Y. Maeng, C.K. Rhee, J.-G. Kang, Y. Sohn, Electrochemical Ce3+/Ce4+ and Eu2+/Eu3+ interconversion, complexation, and electrochemical CO2 reduction on thio-terpyridyl-derivatized Au electrodes, Appl. Surf. Sci. 576 (2022) 151793. https://doi.org/https://doi.org/10.1016/j.apsusc.2021.151793.
    [306] Y. Nishi, M. Inagaki, Gas Adsorption/Desorption Isotherm for Pore Structure Characterization, in: M. Inagaki, F.B.T.-M.S. and E. of C. Kang (Eds.), Butterworth-Heinemann, 2016: pp. 227–247. https://doi.org/https://doi.org/10.1016/B978-0-12-805256-3.00011-8.
    [307] V.F. Dr. Vladimir, Color Theory and Its Application in Art and Design, 1967.
    [308] K. Swapna, S. Mahamuda, A.S. Rao, T. Sasikala, P. Packiyaraj, L.R. Moorthy, G.V. Prakash, Luminescence characterization of Eu3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications, J. Lumin. 156 (2014) 80–86. https://doi.org/https://doi.org/10.1016/j.jlumin.2014.07.022.
    [309] P. Du, J.S. Yu, Eu3+-activated La2MoO6-La2WO6 red-emitting phosphors with ultrabroad excitation band for white light-emitting diodes, Sci. Rep. 7 (2017) 11953. https://doi.org/10.1038/s41598-017-12161-5.
    [310] L. Zhou, P. Du, L. Li, Facile modulation the sensitivity of Eu2+/Eu3+-coactivated Li2CaSiO4 phosphors through adjusting spatial mode and doping concentration, Sci. Rep. 10 (2020) 20180. https://doi.org/10.1038/s41598-020-77185-w.
    [311] P. Dang, G. Li, X. Yun, Q. Zhang, D. Liu, H. Lian, M. Shang, J. Lin, Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: non-concentration quenching and negative thermal expansion, Light Sci. Appl. 10 (2021) 29. https://doi.org/10.1038/s41377-021-00469-x.
    [312] S. Som, A. Choubey, S.K. Sharma, Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor, Phys. B Condens. Matter. 407 (2012) 3515–3519. https://doi.org/https://doi.org/10.1016/j.physb.2012.05.012.
    [313] S. Som, S. Dutta, M. Chowdhury, V. Kumar, V. Kumar, H.C. Swart, S.K. Sharma, A comparative investigation on ion impact parameters and TL response of Y2O3:Tb3+ nanophosphor exposed to swift heavy ions for space dosimetry, J. Alloys Compd. 589 (2014) 5–18. https://doi.org/https://doi.org/10.1016/j.jallcom.2013.11.182.
    [314] S. Som, A. Choubey, S.K. Sharma, Spectral and trapping parameters of Eu3+ in Gd2O2S nanophosphor, J. Exp. Nanosci. 10 (2015) 350–370. https://doi.org/10.1080/17458080.2013.837972.
    [315] P. Dorenbos, C.W.E. van Eijk, A.J.J. Bos, C.L. Melcher, Afterglow and thermoluminescence properties of Lu2SiO5:Ce scintillation crystals, J. Phys. Condens. Matter. 6 (1994) 4167–4180. https://doi.org/10.1088/0953-8984/6/22/016.
    [316] Q. Chen, R. Tong, X. Chen, Y. Xue, Z. Xie, Q. Kuang, L. Zheng, Ultrafine ZnO quantum dot-modified TiO2 composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution, Catal. Sci. Technol. 8 (2018) 1296–1303. https://doi.org/10.1039/C7CY02310C.
    [317] Y. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact, Phys. Chem. Chem. Phys. 14 (2012) 9167–9175. https://doi.org/10.1039/C2CP41318C.
    [318] P. Enright, A. Betts, J. Cassidy, A practical photoelectrochemical cell using non precious metal electrodes, J. Appl. Electrochem. 41 (2011) 345–353. https://doi.org/10.1007/s10800-010-0244-1.
    [319] L. Garcia-Gonzalez, H. Teichert, A.H. Geeraerd, K. Elst, L. Van Ginneken, J.F. Van Impe, R.F. Vogel, F. Devlieghere, Mathematical modelling and in situ determination of pH in complex aqueous solutions during high-pressure carbon dioxide treatment, J. Supercrit. Fluids. 55 (2010) 77–85. https://doi.org/https://doi.org/10.1016/j.supflu.2010.05.024.
    [320] C. Neal, W.A. House, K. Down, An assessment of excess carbon dioxide partial pressures in natural waters based on pH and alkalinity measurements, Sci. Total Environ. 210–211 (1998) 173–185. https://doi.org/https://doi.org/10.1016/S0048-9697(98)00011-4.
    [321] L.-C. Pop, I. Tantis, P. Lianos, Photoelectrocatalytic hydrogen production using nitrogen containing water soluble wastes, Int. J. Hydrogen Energy. 40 (2015) 8304–8310. https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.04.116.
    [322] E. Urbańczyk, M. Sowa, W. Simka, Urea removal from aqueous solutions—a review, J. Appl. Electrochem. 46 (2016) 1011–1029. https://doi.org/10.1007/s10800-016-0993-6.
    [323] H. Yang, M. Yuan, Z. Sun, D. Wang, L. Lin, H. Li, G. Sun, In Situ Construction of a Mn2+-Doped Ni3S2 Electrode with Highly Enhanced Urea Oxidation Reaction Performance, ACS Sustain. Chem. Eng. 8 (2020) 8348–8355. https://doi.org/10.1021/acssuschemeng.0c02160.
    [324] H. Liu, S. Zhu, Z. Cui, Z. Li, S. Wu, Y. Liang, Ni2P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism, Nanoscale. 13 (2021) 1759–1769. https://doi.org/10.1039/D0NR08025J.
    [325] C. Han, L. Du, M. Konarova, D.-C. Qi, D.L. Phillips, J. Xu, Beyond Hydrogen Evolution: Solar-Driven, Water-Donating Transfer Hydrogenation over Platinum/Carbon Nitride, ACS Catal. 10 (2020) 9227–9235. https://doi.org/10.1021/acscatal.0c01932.
    [326] F. Yao, L. Dai, J. Bi, W. Xue, J. Deng, C. Fang, L. Zhang, H. Zhao, W. Zhang, P. Xiong, Y. Fu, J. Sun, J. Zhu, Loofah-like carbon nitride sponge towards the highly-efficient photocatalytic transfer hydrogenation of nitrophenols with water as the hydrogen source, Chem. Eng. J. 444 (2022) 136430. https://doi.org/https://doi.org/10.1016/j.cej.2022.136430.
    [327] X. Ling, Y. Xu, S. Wu, M. Liu, P. Yang, C. Qiu, G. Zhang, H. Zhou, C. Su, A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides, Sci. China Chem. 63 (2020) 386–392. https://doi.org/10.1007/s11426-019-9672-8.
    [328] H. Yi, F. Li, L. Wu, L. Wu, H. Wang, B. Wang, Y. Zhang, Y. Kong, J. Xu, Site occupancy and photoluminescence properties of Eu3+-activated Ba2ZnB2O6 phosphor, RSC Adv. 4 (2014) 64244–64251. https://doi.org/10.1039/C4RA11516C.
    [329] M.K. Sahu, H. Kaur, B. V Ratnam, J.S. Kumar, M. Jayasimhadri, Structural and spectroscopic characteristics of thermally stable Eu3+ activated barium zinc orthophosphate phosphor for white LEDs, Ceram. Int. 46 (2020) 26410–26415. https://doi.org/https://doi.org/10.1016/j.ceramint.2020.07.263.
    [330] G. Lu, C. Yin, X. Zhou, R. Yang, P. Jiang, R. Cong, T. Yang, Eu3+-based efficient red phosphors Y1-xEuxGa3(BO3)4 (0 < x ≤ 1): A potential candidate for near ultraviolet LEDs with high thermal stability, J. Solid State Chem. 277 (2019) 665–672. https://doi.org/https://doi.org/10.1016/j.jssc.2019.07.031.
    [331] Y. Hua, S.K. Hussain, J.S. Yu, Eu3+-activated double perovskite Sr3MoO6 phosphors with excellent color purity for high CRI WLEDs and flexible display film, Ceram. Int. 45 (2019) 18604–18613. https://doi.org/https://doi.org/10.1016/j.ceramint.2019.06.084.
    [332] S. Wang, Wei-Wang, X. Zhou, Y. Li, G. Hua, Z. Li, D. Wang, Z. Mao, Z. Zhang, Ying-Zhao, Comparative study of the luminescence properties of Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu3+ (x = 0, 2) red phosphors, J. Lumin. 221 (2020) 117043. https://doi.org/https://doi.org/10.1016/j.jlumin.2020.117043.
    [333] T. Dai, G. Ju, Y. Lv, Y. Jin, H. Wu, Y. Hu, Luminescence properties of novel dual-emission (UV/red) long afterglow phosphor LiYGeO4: Eu3+, J. Lumin. 237 (2021) 118193. https://doi.org/https://doi.org/10.1016/j.jlumin.2021.118193.
    [334] Q. Yao, P. Hu, P. Sun, M. Liu, R. Dong, K. Chao, Y. Liu, J. Jiang, H. Jiang, YAG:Ce3+ Transparent Ceramic Phosphors Brighten the Next-Generation Laser-Driven Lighting, Adv. Mater. 32 (2020) 1907888. https://doi.org/https://doi.org/10.1002/adma.201907888.

    無法下載圖示 全文公開日期 2025/02/13 (校內網路)
    全文公開日期 2025/02/13 (校外網路)
    全文公開日期 2025/02/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE