簡易檢索 / 詳目顯示

研究生: 張佳軒
Jia-Syuan Jhang
論文名稱: 基於變化擴展狀態觀察器之 Delta機械手臂阻抗控制
Impedance Control of Delta Robot Based on Modified Extended State Observer
指導教授: 藍振洋
Chen-Yang Lan
劉孟昆
Meng-Kun Liu
口試委員: 林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 61
中文關鍵詞: Delta 機械手臂外力估計擴展狀態觀察器阻抗控制
外文關鍵詞: ESO
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究延續文獻中無力量感測器的阻抗控制架構,使用了變化擴展狀態即時觀察器估計機械手臂所受到之外力,解決了原架構忽略加速度造成的估測外力擾動現象,以及僅能使用於阻抗控制的限制。本研究將機械手臂之動力學模型、控制法扭矩輸出、編碼器獲得的角位置及速度資訊整理為擴展狀態空間模型後,使用零階保持器將其離散化,再設計即時觀察器估測外力。最後將此無力量感測器的阻抗控制架構實現於Delta robot並整合觸覺回饋裝置,使其作為遙控主端提供從端Delta robot期望位置的資訊,而Delta robot之外力估計值則回傳給主端作為觸覺回饋的依據。碰撞實驗的結果顯示外力估計的性能良好,且能擬合力量感測器之數值。


    This research continues the sensorless impedance control framework from the previous literature. The new method applies the modified extended state current observer to estimate the external force of the robot. It is not limited to the impedance control and eliminates the estimated force disturbance caused by ignoring the acceleration in the previous work. In this research, the extended state space model is developed by using the robot dynamic model, the torque output of the control law, and the angular position and speed information obtained by the encoder. After the model is discretized with zero order hold, a current observer is designed to estimate the external force. Finally, this framework of sensorless impedance control is implemented in the Delta robot and is integrated with the haptic feedback device. A remote control master device provides the desired position to the slaver Delta robot, and the estimated external force of it is returned to the master devise as the basis for haptic feedback. The results of the collision experiment show that the external force estimator has a good performance, and the estimated force matches the measurement from the force sensor.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 符號說明 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 順應性(Compliance) 3 1.2.2 力量感測 4 1.2.3 力回饋應用 7 1.3 研究目的及貢獻 8 1.4 論文架構 8 第二章 Delta Robot 數學模型 9 2.1 運動學分析 10 2.1.1 正向運動學 10 2.1.2 反向運動學 10 2.1.3 速度分析 12 2.1.4 加速度分析 13 2.2 動力學模型 14 第三章 方法 17 3.1 系統鑑別 17 3.1.1 激勵軌跡 17 3.1.2 最小平方法 18 3.2 力量估計 19 3.2.1 機械手臂一般式 19 3.2.2 擴展狀態觀察器(Extended State Observer, ESO) 19 3.2.3 變化擴展狀態觀察器(Modified Extended State Observer, MESO) 22 3.2.4 離散擴展狀態觀察器[59](Discrete Extended State Observer, DESO) 24 3.2.5 觀察器之增益Lp、Lc之設計: 26 3.3 阻抗控制[60] 27 第四章 實驗架構與結果 29 4.1 實驗架構 29 4.2 實驗一:阻抗控制之離線外力估計 33 4.2.1 方波外力命令下的觀察器外力估計結果 36 4.2.2 弦波外力命令下的觀察器外力估計結果 38 4.2.3 Jacobian矩陣對估計外力的影響 40 4.3 實驗二:PD控制之離線外力估測 43 4.4 實驗三:即時估計力量之阻抗控制 45 4.5 實驗四:遙控碰撞實驗 49 4.6 實驗總結 53 第五章 結論與未來展望 54 5.1 結論 54 5.2 研究貢獻 55 5.3 未來展望 56 參考文獻 57 附錄A 62 阻抗控制器收斂證明[60] 62 離散系統之可觀性[61] 64 Ackermann’s Formula證明 66 附錄B 68 實驗設備 68 實驗一—方波外力 73 實驗一—弦波外力 76 實驗一—方波外力估計殘差 79 實驗一—弦波外力估計殘差 79 實驗一—四種方法外力X方向的估計值 81 實驗二—方波外力估計殘差 83 實驗二—弦波外力估計殘差 84 系統鑑別結果 85

    [1] International Federation of Robotics, "World Robotics Report 2020," 2020.
    [2] Cmglee. "達文西封閉式Surgeon console." CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:Cmglee_Cambridge_Science_Festival_2015_da_Vinci_console.jpg?uselang=zh#filehistory.
    [3] P. P. Rao, "Robotic surgery: new robots and finally some real competition!," (in eng), World J Urol, vol. 36, no. 4, pp. 537-541, Apr 2018
    [4] 范仁志, "不當對手當助手 非達文西手術機器人另創一片天," 2020.
    [5] 范仁志, "火鳥機器人首度手術成功 KHI建立年產200台生產線," 2020.
    [6] P. Koukourikis and K. H. Rha, "Robotic surgical systems in urology: What is currently available?," Investig Clin Urol, vol. 62, no. 1, pp. 14-22, 1/ 2021
    [7] 廖家宜, "上銀攜中山醫 打造首MIT微創手術機器人," 2020.
    [8] 黃仲宏, "MEDICA 觀察心得與手術機器人發展趨勢," 智慧自動化產業期刊 3月刊, vol. 32, no. 03, pp. 24-36, 2020
    [9] W. Wang, R. N. Loh, and E. Y. Gu, "Passive compliance versus active compliance in robot‐based automated assembly systems," Industrial Robot: An International Journal, 1998
    [10] J. D. Lane, "Evaluation of a remote center compliance device," Assembly Automation, vol. 1, no. 1, pp. 36-46, 1980
    [11] D. I. Park, H. Kim, C. Park, T. Choi, J. Park, and B. Kim, "Passive compliant module with the displacement measurement sensor and its application for automatic assembly," IFAC-PapersOnLine, vol. 51, no. 22, pp. 85-90, 2018
    [12] J.-J. Park, B.-S. Kim, J.-B. Song, and H.-S. Kim, "Safe link mechanism based on passive compliance for safe human-robot collision," in Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007: IEEE, pp. 1152-1157.
    [13] B. R. Shetty and M. H. Ang, "Active compliance control of a PUMA 560 robot," in Proceedings of IEEE International Conference on Robotics and Automation, 1996, vol. 4: IEEE, pp. 3720-3725.
    [14] Z. Rui, Y. Qingjun, S. Jiaxing, Y. Shangru, L. Yudong, and M. Qi, "Research and Improvement on Active Compliance Control of Hydraulic Quadruped Robot," International Journal of Control, Automation and Systems, pp. 1-13, 2021
    [15] S. Onogi, Y. Urayama, S. Irisawa, and K. Masuda, "Robotic ultrasound probe handling auxiliary by active compliance control," Advanced Robotics, vol. 27, no. 7, pp. 503-512, 2013
    [16] S. Chiaverini, B. Siciliano, and L. Villani, "A survey of robot interaction control schemes with experimental comparison," IEEE/ASME Transactions on mechatronics, vol. 4, no. 3, pp. 273-285, 1999
    [17] D.-H. Lee, U. Kim, H. Jung, and H. R. Choi, "A capacitive-type novel six-axis force/torque sensor for robotic applications," IEEE Sensors Journal, vol. 16, no. 8, pp. 2290-2299, 2015
    [18] U. Kim, D.-H. Lee, W. J. Yoon, B. Hannaford, and H. R. Choi, "Force sensor integrated surgical forceps for minimally invasive robotic surgery," IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1214-1224, 2015
    [19] V. Müller, M. Fritzsche, and N. Elkmann, "Sensor design and calibration of piezoresistive composite material," in 2015 IEEE SENSORS, 2015: IEEE, pp. 1-4.
    [20] R. S. Karmakar et al., "Real-Time Intraoperative Pressure Monitoring to Avoid Surgically Induced Localized Brain Injury Using a Miniaturized Piezoresistive Pressure Sensor," ACS omega, vol. 5, no. 45, pp. 29342-29350, 2020
    [21] F. Ju et al., "A miniature piezoelectric spiral tactile sensor for tissue hardness palpation with catheter robot in minimally invasive surgery," Smart Materials and Structures, vol. 28, no. 2, p. 025033, 2019
    [22] Y. Tajitsu, "Smart piezoelectric fabric and its application to control of humanoid robot," Ferroelectrics, vol. 499, no. 1, pp. 36-46, 2016
    [23] J. Gajda, R. Sroka, T. Zeglen, and P. Burnos, "The influence of temperature on errors of WIM systems employing piezoelectric sensor," Metrology and Measurement Systems, vol. 20, no. 2, pp. 171--182, 2013
    [24] H. Xie, H. Liu, S. Luo, L. D. Seneviratne, and K. Althoefer, "Fiber optics tactile array probe for tissue palpation during minimally invasive surgery," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: IEEE, pp. 2539-2544.
    [25] L. Xiong, G. Jiang, Y. Guo, and H. Liu, "A three-dimensional fiber Bragg grating force sensor for robot," IEEE Sensors Journal, vol. 18, no. 9, pp. 3632-3639, 2018
    [26] Z. Wang, B. Zi, D. Wang, J. Qian, W. You, and L. Yu, "External force self-sensing based on cable-tension disturbance observer for surgical robot end-effector," IEEE Sensors Journal, vol. 19, no. 13, pp. 5274-5284, 2019
    [27] J. Yuan, Y. Qian, L. Gao, Z. Yuan, and W. Wan, "Position-based impedance force controller with sensorless force estimation," Assembly Automation, 2019
    [28] B. Yao, Z. Zhou, L. Wang, W. Xu, and Q. Liu, "Sensor-less external force detection for industrial manipulators to facilitate physical human-robot interaction," Journal of Mechanical Science and Technology, vol. 32, no. 10, pp. 4909-4923, 2018
    [29] H. Cheng and H. Jiang, "Sensorless force estimation and control of Delta robot with limited access interface," Industrial Robot: An International Journal, 2018
    [30] S. Zhang, S. Wang, F. Jing, and M. Tan, "A sensorless hand guiding scheme based on model identification and control for industrial robot," IEEE Transactions on Industrial Informatics, vol. 15, no. 9, pp. 5204-5213, 2019
    [31] K. D. Kallu, W. Jie, and M. C. Lee, "Sensorless reaction force estimation of the end effector of a dual-arm robot manipulator using sliding mode control with a sliding perturbation observer," International Journal of Control, Automation and Systems, vol. 16, no. 3, pp. 1367-1378, 2018
    [32] J. Lei, G. Zheng, L. Hu, L. Zhang, and T. Wang, "External force estimation of fracture reduction robot based on force residual method," International Journal of Advanced Robotic Systems, vol. 17, no. 1, p. 1729881419897470, 2020
    [33] M. Van Damme et al., "Estimating robot end-effector force from noisy actuator torque measurements," in 2011 IEEE International Conference on Robotics and Automation, 2011: IEEE, pp. 1108-1113.
    [34] L. Roveda and D. Piga, "Interaction force computation exploiting environment stiffness estimation for sensorless robot applications," in 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, 2020: IEEE, pp. 360-363.
    [35] N. Yilmaz, M. Bazman, and U. Tumerdem, "External force/torque estimation on a dexterous parallel robotic surgical instrument wrist," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 4396-4403.
    [36] H. Choi, S. Oh, and K. Kong, "Control of a robotic manipulator in the polar coordinate system using a biarticular actuation mechanism," International Journal of Control, Automation and Systems, vol. 14, no. 4, pp. 1095-1105, 2016
    [37] L. Roveda and D. Piga, "Sensorless environment stiffness and interaction force estimation for impedance control tuning in robotized interaction tasks," Autonomous Robots, vol. 45, no. 3, pp. 371-388, 2021
    [38] T. Ren, Y. Dong, D. Wu, and K. Chen, "Collision detection and identification for robot manipulators based on extended state observer," Control Engineering Practice, vol. 79, pp. 144-153, 2018
    [39] A. Marban, V. Srinivasan, W. Samek, J. Fernández, and A. Casals, "A recurrent convolutional neural network approach for sensorless force estimation in robotic surgery," Biomedical Signal Processing and Control, vol. 50, pp. 134-150, 2019
    [40] N. Haouchine, W. Kuang, S. Cotin, and M. Yip, "Vision-based force feedback estimation for robot-assisted surgery using instrument-constrained biomechanical three-dimensional maps," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2160-2165, 2018
    [41] L. Zou, C. Ge, Z. J. Wang, E. Cretu, and X. Li, "Novel tactile sensor technology and smart tactile sensing systems: A review," Sensors, vol. 17, no. 11, p. 2653, 2017
    [42] G. Gautschi, "Piezoelectric sensors," in Piezoelectric Sensorics: Springer, 2002, pp. 73-91.
    [43] R. S. Dahiya and M. Valle, "Tactile sensing for robotic applications," Sensors, Focus on Tactile, Force and Stress Sensors, pp. 298-304, 2008
    [44] S. Chopra and N. Gravish, "Piezoelectric actuators with on-board sensing for micro-robotic applications," Smart Materials and Structures, vol. 28, no. 11, p. 115036, 2019
    [45] L. Gracia, J. E. Solanes, P. Muñoz-Benavent, J. V. Miro, C. Perez-Vidal, and J. Tornero, "Adaptive sliding mode control for robotic surface treatment using force feedback," Mechatronics, vol. 52, pp. 102-118, 2018
    [46] D. Vassileva, Y. Kiyosawa, and M. Suzuki, "Sensorless torque control for a robot with harmonic drive reducers," Mechanics based design of structures and machines, vol. 39, no. 2, pp. 253-267, 2011
    [47] J. E. Solanes, L. Gracia, P. Munoz-Benavent, J. V. Miro, M. G. Carmichael, and J. Tornero, "Human–robot collaboration for safe object transportation using force feedback," Robotics and Autonomous Systems, vol. 107, pp. 196-208, 2018
    [48] Z. Wang and M. Schwager, "Kinematic multi-robot manipulation with no communication using force feedback," in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016: IEEE, pp. 427-432.
    [49] G. Pegman, P. Desbats, F. Geffard, G. Piolain, and A. Coudray, "Force‐feedback teleoperation of an industrial robot in a nuclear spent fuel reprocessing plant," Industrial Robot: An International Journal, 2006
    [50] G. Piolain, F. Geffard, A. Coudray, P. Garrec, J. Thro, and Y. Perrot, "Dedicated and standard industrial robots used as force-feedback telemaintenance remote devices at the areva recycling plant," in 2010 1st International Conference on Applied Robotics for the Power Industry, 2010: IEEE, pp. 1-6.
    [51] J. Wang et al., "Application of a Robotic Tele‐Echography System for COVID‐19 Pneumonia," Journal of Ultrasound in Medicine, vol. 40, no. 2, pp. 385-390, 2021
    [52] R. Ye et al., "Feasibility of a 5G-based robot-assisted remote ultrasound system for cardiopulmonary assessment of patients with Coronavirus Disease 2019," Chest, vol. 159, no. 1, pp. 270-281, 2021
    [53] J. Guo, Y. Yu, S. Guo, and W. Du, "Design and performance evaluation of a novel master manipulator for the robot-assist catheter system," in 2016 IEEE International Conference on Mechatronics and Automation, 2016: IEEE, pp. 937-942.
    [54] M. Moradi Dalvand, B. Shirinzadeh, A. H. Shamdani, J. Smith, and Y. Zhong, "An actuated force feedback‐enabled laparoscopic instrument for robotic‐assisted surgery," The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 10, no. 1, pp. 11-21, 2014
    [55] 郭翰,"無感測器之阻抗控制應用於Delta機械臂,"碩士論文,國立臺灣科技大學機械工程系,2019
    [56] 王謙,"基於無感測器之模型式Delta機械手臂故障偵測,"碩士論文,國立臺灣科技大學機械工程系,2019
    [57] A. Codourey, "Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation," The International Journal of Robotics Research, vol. 17, no. 12, pp. 1325-1336, 1998
    [58] 蔡高岳, 機器人學講義.
    [59] R. Miklosovic, A. Radke, and Z. Gao, "Discrete implementation and generalization of the extended state observer," in 2006 American Control Conference, 2006: IEEE, p. 6 pp.
    [60] M.-C. Chien and A.-C. Huang, "Adaptive impedance control of robot manipulators based on function approximation technique," Robotica, vol. 22, no. 4, p. 395, 2004
    [61] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems. Addison-wesley Reading, MA, 1998.
    [62] WPC Systems Ltd. http://www.wpc.com.tw/.
    [63] National Instruments. https://www.ni.com/zh-tw.html.
    [64] Delta Electronics Inc. https://www.deltaww.com/zh-TW/index.
    [65] ATI Industrial Automation. https://www.ati-ia.com/index.aspx.
    [66] HapticsHouse.com. https://hapticshouse.com/.
    [67] Dr Gomez-de-Gabriel. "Creating a library for Novint’s Falcon haptic programming with LabVIEW." http://gomezdegabriel.com/2014/02/creating-a-library-for-novints-falcon-haptic-programming-with-labview/.
    [68] Dr Gomez-de-Gabriel. "Start Programming a Falcon haptic with LabVIEW." http://gomezdegabriel.com/2014/02/start-programming-a-falcon-haptic-with-labview/.

    無法下載圖示 全文公開日期 2026/08/06 (校內網路)
    全文公開日期 2026/08/06 (校外網路)
    全文公開日期 2026/08/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE