簡易檢索 / 詳目顯示

研究生: 陳玠均
CHEN,CHIEH-CHUN
論文名稱: 圖案化聚甲基丙烯酸N,N-二甲氨基乙酯/聚甲基丙烯酸共聚高分子刷於雷射檢測鼠疫桿菌
Patterning of PDEAEMA-co-PMAA copolymer brush on silicon substrate for application of Yersinia pestis detection with homemade laser system
指導教授: 陳建光
Jem-Kun Chen
口試委員: 邱顯堂
Hsien-Tang Chiu
張棋榕
Shih-Rong Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 112
中文關鍵詞: 原子轉移自由基聚合法高分子繞射光柵微影製程鼠疫桿菌
外文關鍵詞: Atom-transfer radical-polymerization(ATRP), diffraction grating, Photolithography, Yersinia pestis
相關次數: 點閱:386下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用原子轉移自由基聚合(Atom Transfer Radical Polymerization, ATRP)於圖案化矽晶圓製備表面起始聚甲基丙烯酸 2-(二乙氨基)乙酯(Poly(2-(Diethylamino)ethyl methacrylate), PDEAEMA、聚甲基丙烯酸(Poly(methacrylic acid)), PMAA的共聚高分子刷。
    利用X射線光電子能譜儀(XPS)、傅立葉轉換紅外線光譜儀(FT-IR) 分析表面組成並利用原子力顯微鏡(AFM)、雷射能量分析儀分析高分子刷高度50nm-150nm的關係,可以發現隨高度的上升,能量回隨之下降,結果顯示可在線/間距比率為1:1.5的圖案化光阻矽晶圓表面長出現寬為1、1.5、2、3μm的一維光柵。


    In this study, patterned PDEAEMA-PMAA co-polymer brushes were grafted from silicon substrates with VLSI processes. First at all, photoresists were patterned as line arrays with lithography process. Sequentially, the surfaces were treated with oxygen plasma to generate line patterns of hydrophilic groups. Halogen groups were immobilized through the line patterns of hydrophilic groups as initiators of ATRP. Finally, PDEAEMA-PMAA co-polymer brushes were grafted from the line patterns to generate polymer gratings. The composition of the surface at each stage of fabrication were verified with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR). In addition, we designed a laser system to observe the intensity of reflective diffraction. Thickness of the polymer brushes were analyzed with atomic force microscopy (AFM) and the laser system.

    指導教授推薦書 I 審定書 II 摘要 III Abstract V 目錄 VIII 圖目錄 XII 1. 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 2. 理論與文獻回顧 3 2.1. 高分子刷簡介 3 2.2. 自組裝單分子層 6 2.3. 原子轉移自由基聚合法 8 2.4. 液態除氣法 11 2.5. 智能型高分子 13 2.6. 微影製程[26] 16 2.7. 晶圓蝕刻 23 2.8. 光柵效應 26 3. 儀器簡介 29 3.1. 原子力顯微鏡 (AFM) 29 3.2. 掃描式電子顯微鏡 (SEM) 33 3.3. X射線光電能譜儀 (XPS) 35 3.4. 雷射掃描共軛焦顯微鏡(CLSM) 37 3.5. 傅立葉轉換紅外線光譜儀 (FT-IR) 39 3.6. 接觸角 (CA) 43 3.7. 能量分布儀(BeamMic) 45 4. 實驗流程與方法 46 4.1. 實驗藥品 46 4.2. 實驗儀器 47 4.3. 實驗流程圖 50 4.4. 實驗步驟 51 4.4.1. 矽晶片表面起始聚合PDEAEMA高分子刷 51 4.4.2. 微影製程製備圖案化光阻層 53 4.4.3. 蝕刻製程製備圖案化矽晶圓 55 4.4.4. 圖案化矽晶片表面起始聚合高分子刷 56 4.4.5. 線型矽晶圓表面起始聚合高分子刷 59 4.4.6. 表面起始ATRP聚合PDEAEMA-co-PMAA高分子刷 61 5. 結果討論 64 5.1. 矽晶圓表面高分子刷分析 64 5.1.1. FTIR光譜 64 5.1.2. ESCA化學能譜分析 66 5.1.3. 接觸角親疏水測定 69 5.2. 圖案化高分子刷表面分析 70 5.2.1. 微影製程光阻圖案 70 5.2.2. 圖案化APTES自組裝層 73 5.2.3. 圖案化ATRP起始劑層 73 5.2.4. 圖案化PDEAEMA高分子刷 74 5.2.5. 圖案化PDEAEMA-co-PMAA高分子刷用於雷射分析 77

    [1] N. Bunjes, S. Paul, J. Habicht, O. Prucker, J. Rühe, and W. Knoll, "On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures," Colloid and Polymer Science, vol. 282, pp. 939-945, 2004.
    [2] P. de Gennes, "Conformations of polymers attached to an interface," Macromolecules, vol. 13, pp. 1069-1075, 1980.
    [3] B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Progress in Polymer Science, vol. 25, pp. 677-710, 2000.
    [4] S. Milner, "Polymer brushes," Science, vol. 251, pp. 905-914, 1991.
    [5] Y. T. M. Ejaz, T. Fukuda, "Controlled grafting of a well-defined polymer on porous glass filter by surface-initiated atom transfer radical polymerization," polymer, vol. 42, pp. 6811-6815, 2001.
    [6] M. Biesalski and J. Ru1he, "Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a Planar Solid Surface," Macromolecules, vol. 32, pp. 2309-2316, 1999.
    [7] BZhao.W.JBrittain,"Polymer brushes surface-immobilized macromolecules," Prog. Polym. Sci, vol. 25, pp. 677-710, 2000.
    [8] A. Kopf, J. Baschnagel, J. Wittmer, and K. Binder, "On the adsorption process in polymer brushes: a Monte Carlo study," Macromolecules, vol. 29, pp. 1433-1441, 1996.
    [9] R. Zajac and A. Chakrabarti, "Irreversible polymer adsorption from semidilute and moderately dense solutions," Physical Review E, vol. 52, p. 6536, 1995.
    [10] W.C. Bigelow, D.L. Pickett, W.A. Zisman, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
    [11] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
    [12] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
    [13] D. G. a. S. M. Husson, "Room Temperature Growth of Surface-Confined Poly(acrylamide) from Self-Assembled Monolayers Using Atom Transfer Radical Polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [14] D. Gopireddy and S. M. Husson, "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [15] B. M. E. Delamarche, H. Kang, and Ch. Gerber, "Thermal Stability of Self-Assembled Monolayers," Langmuir, vol. 10, pp. 4103-4108, 1994.
    [16] J. A. H. a. J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
    [17] S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," The Journal of Physical Chemistry B, vol. 103, pp. 4212-4217, 1999.
    [18] J.-K. Chen, J.-H. Wang, C.-C. Cheng, J.-Y. Chang, and F.-C. Chang, "Polarity-indicative two-dimensional periodic relief gratings of tethered poly (methyl methacrylate) on silicon surfaces for visualization in volatile organic compound sensing," Applied Physics Letters, vol. 102, p. 151906, 2013.
    [19] G. Masci, L. Giacomelli, and V. Crescenzi, "Atom Transfer Radical Polymerization ofN-Isopropylacrylamide," Macromolecular Rapid Communications, vol. 25, pp. 559-564, 2004.
    [20] K. M. a. J. Xia, "Atom Transfer Radical Polymerization," Chem. Rev., vol. 101, pp. 2921-2990, 2001.
    [21] T. Bhuvana, B. Kim, X. Yang, H. Shin, and E. Kim, "Reversible Full Color Generation with Patterned Yellow Electrochromic Polymers," Angewandte Chemie International Edition, vol. 52, pp. 1180-1184, 2013.
    [22] Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano letters, vol. 5, pp. 5-9, 2005.
    [23] Y.-H. Ho, K.-H. Ting, K.-Y. Chen, S.-W. Liu, W.-C. Tian, and P.-K. Wei, "Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel," Optics express, vol. 21, pp. 29827-29835, 2013.
    [24] E. Costa, M. Coelho, L. M. Ilharco, A. Aguiar-Ricardo, and P. T. Hammond, "Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior," Macromolecules, vol. 44, pp. 612-621, 2011/02/08 2011.
    [25] Qiaolan Zhang, Fan Xia, Taolei Sun, Wenlong Song, Tianyi Zhao, Mancang Liua, and Lei Jiang, "Wettability switching between high hydrophilicity at low pH and high hydrophobicity at high pH on surface based on pH-responsive polymer," Chem. Commun. vol. 16, pp. 1199–1201, January 16 2008.
    [26] H. Xiao, "半導體製程技術導論,羅正忠和張鼎張譯," ed:二版,臺灣培生教育出版,臺北市,民國九十三年, 2007.
    [27] P. M. Morse, P. M. Morse, and P. M. Morse, Vibration and sound vol. 2: McGraw-Hill New York, 1948.
    [28] Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, et al., "Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties," The Journal of Physical Chemistry B, vol. 107, pp. 7406-7413, 2003.
    [29] Y. S. F. J. Xu, Z. P. Cheng, X. L. Zhu, and E. T. K. C. X. Zhu, and K. G. Neoh, "Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations," Macromolecules, vol. 38, pp. 6524-6528, 2005.
    [30] F. Zhou, L. Jiang, W. Liu, and Q. Xue, "Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two-Step Surface-Initiated Atomic-Transfer Radical Polymerization," Macromolecular Rapid Communications, vol. 25, pp. 1979-1983, 2004.
    [31] Rong Dong, Sitaraman Krishnan, Barbara A. Baird, Manfred Lindau, and Christopher K. Ober, "Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon Surfaces," Biomaterials, vol. 8, pp. 3082-3092, 2007.
    [32] M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux, "Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion," ACS nano, vol. 6, pp. 7227-7233, 2012.
    [33] P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Diirig, W. Hgberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer and G. Binnig. "Ultrahigh density, high-data-rate NEMS-based AFM data storage system "P. Vettiger et al. / Microelectronic Engineering 46 (1999) 11-17
    [34] J. LIOU , "Refining the grip on nature’s fine grains, Drilling contractor, " 68 (2012).
    [35] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, et al., "Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces," The Journal of Physical Chemistry C, vol. 116, pp. 6289-6297, 2012.
    [36] Debashish Roy, James T. Guthrie and Se´bastien Perrier, "Synthesis of natural–synthetic hybrid materials from cellulose via the RAFT process, " Soft Matter,2008, 4, 145-155.
    [37] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, et al., "Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces," The Journal of Physical Chemistry C, vol. 116, pp. 6289-6297, 2012.
    [38] W. H. Yu, E. T. Kang, and K. G. Neoh, "Controlled Grafting of Well-Defined Polymers on Hydrogen-Terminated Silicon Substrates by Surface-Initiated Atom Transfer Radical Polymerization," J. Phys. Chem. B, 2003, 107 (37), pp 10198–10205.
    [39] Qian Yang, Jing Tian, Meng-Xin Hu, and Zhi-Kang Xu, "Construction of a Comb-like Glycosylated Membrane Surface by a Combination of UV-Induced Graft Polymerization and Surface-Initiated ATRP," Langmuir, 2007, 23 (12), pp 6684–6690.
    [40] Chang Xu, Tao Wu, Charles Michael Drain, James D. Batteas,Michael J. Fasolka, and Kathryn L. Beers, "Effect of Block Length on Solvent Response of Block Copolymer Brushes: Combinatorial Study with Block Copolymer Brush Gradients, "Macromolecules 2006, 39, 3359-3364.
    [41] Zhengyang Zhou, Shenmin Zhu* and Di Zhang’’ Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release’’ J. Mater. Chem., 2007, 17, 2428–2433
    [42] BochengZhu. SteveEdmondson’’ Polydopamine-melanin initiators for Surface-initiated ATRP’’ B. Zhu, S. Edmondson / Polymer 52 (2011) 2141e2149
    [43] Marcel J. E. Fischer’’ Amine Coupling Through EDC/NHS: A Practical Approach’’
    [44] J.SPieper,THafmans,J.HVeerkamp,T.Hvan Kuppevelt’'Development of tailor-made collagen–glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects’’
    [45]Xiao-Feng Hua & Tian-Cai Liu & Yuan-Cheng Cao &Bo Liu & Hai-Qiao Wang & Jian-Hao Wang &Zhen-Li Huang & Yuan-Di Zhao''Characterization of the coupling of quantum dots and immunoglobulin antibodies''Anal Bioanal Chem (2006) 386:1665–1671
    [46] Department of Electrical and Electronic Engineering, University of Miyazaki,1–1 Gakuenkibanadai-Nishi, Miyazaki, 889–2192 Japan Institute of Industrial Science and Technical Research, Kyushu Tokai University,9–1–1 Toroku, Kumamoto, 862–8652 Japan’’ Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method’’ Acoust. Sci. & Tech. 29, 4 (2008)

    QR CODE