簡易檢索 / 詳目顯示

研究生: 蔡博安
Po-An Tsai
論文名稱: 高效率激發錯合體摻雜紅色螢光材料之有機發光二極體
Fabrication of A Highly Efficient Exciplex Based Red Fluorescent Organic Light-Emitting Diode
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
范慶麟
Ching-Lin Fan
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 88
中文關鍵詞: 有機發光二極體激發錯合體熱活化延遲螢光反向系統間跨越元件壽命暫態光致發光暫態電致發光
外文關鍵詞: OLED, Exciplex, TADF, RISC, Lifetime, Transient Photoluminescence, Transient Electroluminescence
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以carbazole結構之電洞傳輸材料4,4′,4″-tri(Ncarbazolyl)triphenylamine (TCTA)做為電子施體,以及triazine結構之電子傳輸材料2,4,6-tris(3-(1H-pyrazol-1-yl)phenyl)-1,3,5-triazine (3P-T2T)做為電子受體,使用共蒸鍍的方式混和兩種材料,使得在膜層介面上形成高效率的激發錯合體,並從光致發光光譜證明激發錯合體的產生。
    接著透過結構上的調變,分析結構對效率之影響,並最佳化元件使載子達到平衡,綜合了結構調變的實驗結果,激發錯合體元件得到12%的高外部量子效率,而在激發錯合體中摻雜5%的紅色螢光材料得到9.2%的高外部量子效率。
    最後,在壽命量測實驗中,以1000 nits的初始亮度,得到T75的元件壽命為310分鐘,也利用暫態光致發光及暫態電致發光印證激發錯合體的機制。


    In this work, we used carbazole based hole transport material 4,4′,4″-tri(Ncarbazolyl)triphenylamine (TCTA) as electron donor and triazine based electron transport material 2,4,6-tris(3-(1H-pyrazol-1-yl)phenyl)-1,3,5-triazine (3P-T2T) as electron donor in an exciplex forming OLED. The two materials were mixed in a co-vapor deposition method to produce highly efficient exciplex at the interface as evident by photoluminescence spectrum.
    We analyzed the effect of the change in device structure on the device efficiency in order to achieve the best efficiency with optimized charge balance. The optimized exciplex device without dopants showed external quantum efficiency of 12%, while the device doped with red fluorescent material showed external quantum efficiency of 9.2%. In addition, the device exhibited lifetime (T75) of 310 minutes with initial brightness of 1000 nits. Transient photoluminescence and transient electroluminescence measurement were carried out to analyze the exciplex mechanism.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 XI 第一章 緒論 1 1.1前言 1 1.2有機發光二極體發展歷史 1 第二章 文獻回顧 3 2.1主體材料之性質 3 2.1.1電子傳輸主體材料T2T、T3T與TST之材料性質 3 2.1.2電子傳輸主體材料3P-T2T、oCF3-T2T與3N-T2T之材料性質 6 2.2激發錯合體之突破 8 2.3高效率激發錯合體之應用 9 2.4激發錯合體摻雜螢光材料 11 2.5研究動機 14 第三章 理論基礎 16 3.1電致發光原理 16 3.2主客體發光機制 18 3.3激發錯合體 20 3.4激發錯合體摻雜螢光材料 21 3.5元件發光效率 22 第四章 實驗架構 24 4.1實驗設備 24 4.1.1超音波清洗機 24 4.1.2高真空濺鍍機 24 4.1.3旋轉塗佈機 25 4.1.4曝光機 26 4.1.5材料純化系統 26 4.1.6氧電漿機 27 4.1.7高真空熱蒸鍍機 27 4.1.8氮氣循環手套箱 29 4.2實驗前置作業 30 4.2.1有機材料純化 30 4.2.2室溫濺鍍氧化銦錫基板 31 4.2.3黃光微影製程 33 4.3實驗步驟 35 4.3.1基板清洗 35 4.3.2高真空熱蒸鍍製程 35 4.4.3元件封裝 36 4.4量測設備 37 4.4.1探針式膜厚量測儀 37 4.4.2橢圓偏振儀 37 4.4.3分光式輝度計 38 4.4.4螢光光譜儀 38 4.4.5紫外光至可見光光譜儀 39 4.4.6暫態電致發光系統 39 4.4.7原子力顯微鏡 40 4.5材料介紹 40 4.5.1電洞注入材料 40 4.5.2電洞傳輸材料 41 4.5.3放光材料 42 4.5.4電子傳輸材料 43 4.5.5電子注入材料 43 4.5.6陰極材料 44 第五章 結果與討論 45 5.1基礎光譜特性分析 45 5.2激發錯合體元件結構 47 5.3激發錯合體元件特性分析 48 5.4紅色螢光激發錯合體元件特性分析 51 5.4.1實驗一:摻雜濃度調變之元件特性 51 5.4.2實驗二:發光層厚度調變之元件特性 54 5.4.3實驗三:電子傳輸層調變之元件特性 57 5.4.4實驗四:與參考元件之元件特性比較 60 5.5暫態光致發光特性分析 63 5.6暫態電致發光特性分析 65 5.7有機發光二極體壽命分析 66 5.8與已發表之紅色螢光激發錯合體元件比較 67 第六章 結論 69 參考文獻 70

    [1] J. J. Lih and C. F. Sung, ‘‘Full-color active-matrix OLED based on a-Si TFT technology,’’ J. Soc. Inf. Display, 11, 617 (2003).
    [2] M. Kashiwabara, K. Hanawa, R. Asaki, I. Kobori, R. Matsuura, H. Yamada, T. Yamamoto, A. Ozawa, Y. Sato, S. Terada, J. Yamada, T. Sasaoka, S. Tamura, and T. Urabe, ‘‘Advanced AM-OLED display based on white emitter with microcavity structure,’’ SID Int. Symp. Dig. Tech. Pap., 35, 1017 (2004).
    [3] G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, ‘‘High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,’’ Appl. Phys. Lett., 85, 3911 (2004).
    [4] T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura, and T. Urabe, ‘‘A 13.0-inch AM-OLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC),’’ SID Int. Symp. Dig. Tech. Pap., 32, 384 (2001).
    [5] H. Sasabe, N. Toyota, H. Nakanishi, T. Ishizaka, Y. J. Pu, and J. Kido, ‘‘3,3'-Bicarbazole-based host materials for high-efficiency blue phosphorescent OLEDs with extremely low driving voltage,’’ Adv. Mater., 24, 3212 (2012).
    [6] A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, ‘‘Thin film encapsulated flexible organic electroluminescent displays,’’ Appl. Phys. Lett., 83, 413 (2003).
    [7] G. Destriau, J. chem. Phys, 33, 587 (1936).
    [8] M. Pope, H. P. Kallmann, and P. Magnante, ‘‘Electroluminescence in Organic Crystals,’’ J. Chem. Phys., 38, 2042 (1963).
    [9] C. W. Tang and S. A. VanSlyke, ‘‘Organic electroluminescent diodes,’’ Appl. Phys. Lett., 51, 913 (1987).
    [10] H. F. Chen, S. J. Yang, Z. H. Tsai, W. Y. Huag, T. C. Wang, and K. T. Wang, ‘‘1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs,’’ J. Mater. Chem., 19, 8112 (2009).
    [11] A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, ‘‘Electron transport materials for organic light-emitting diodes,’’ Chem. Mater., 16, 4556 (2004).
    [12] G. Hughes and M. R. Bryce, ‘‘Electron-transporting materials for organic electroluminescent and electrophosphorescent devices,’’ J. Mater. Chem., 15, 94 (2005).
    [13] S. J. Su, H. Sasabe, Y. J. Pu, K. Nakayama, and J. Kido, ‘‘Tuning energy levels of electron-transport materials by nitrogen orientation for electrophosphorescent devices with an ‘ideal’ operating voltage,’’ Adv. Mater., 22, 3311 (2010).
    [14] H. F. Chen, T. C. Wang, S. W. Lin, W. Y. Hung, H. C. Dai, H. C. Chiu, K. T. Wong, M. H. Ho, T. Y. Cho, C. W. Chen, and C. C. Lee, ‘‘Peripheral modification of 1,3,5-triazine based electron-transporting host materials for sky blue, green, yellow, red, and white electrophosphorescent devices,’’ J. Mater. Chem., 22, 15620 (2012).
    [15] K. Goushi, K. Yoshida, K. Sato, and C. Adachi, ‘‘Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,’’ Nature Photon., 6, 253 (2012).
    [16] W. Y. Hung, G. C. Fang, Y. C. Chang, T. Y. Kuo, P. T. Chou, S. W. Lin, and K. T. Wang, ‘‘Highly Efficient Bilayer Interface Exciplex For Yellow Organic Light Emitting Diode,’’ ACS. Appl. Mater. Interfaces, 5, 6526 (2013).
    [17] B. Zhao, T. Zhang, B. Chu, W. Li, Z. Su, H. Wu, X. Yan, F. Jin, Y. Gao, and C. Liu, ‘‘Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host,’’ Sci. Rep., 5, 10697 (2015).
    [18] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, ‘‘Efficient up-conversion of triplet excitons into a singlet state and its
    application for organic light emitting diodes,’’ Appl. Phys. Lett., 98, 083302 (2011).
    [19] S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, ‘‘High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,’’ Appl. Phys. Lett., 101, 093306 (2012).
    [20] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, ‘‘Highly efficient phosphorescent emission fromorganic electroluminescent devices,’’ Nature, 395, 151 (1998).
    [21] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, ‘‘Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,’’ J. Appl. Phys., 90, 5048 (2001).
    [22] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, ‘‘Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,’’ Appl. Phys. Lett., 98, 083302 (2011).
    [23] S. Youn Lee, T. Yasuda, H. Nomura, and C. Adachi, ‘‘High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,’’ Appl. Phys. Lett., 101, 093306 (2012).
    [24] H. Tanaka, K. Shizu, H. Miyazaki, and C. Adachi, ‘‘Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative,’’ Chem. Commun., 48, 11392 (2012).
    [25] T. Nakagawa, S.-Y. Ku, K.-T. Wong, and C. Adachi, ‘‘Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure,’’ Chem. Commun., 48, 9580 (2012).
    [26] Q. S. Zhang, J. Li, K. Shizu, S. P. Huang, S. Hirata, H. Miyazaki, and C. Adachi, ‘‘Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes,’’ J. Am. Chem. Soc., 134, 14706 (2012).
    [27] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, ‘‘Highly efficient organic light-emitting diodes from delayed fluorescence,’’ Nature, 492, 234 (2012).
    [28] J. Li, H. Nomura, H. Miyazaki, and C. Adachi, ‘‘Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor,’’ Chem. Commun., 50, 6174 (2014).
    [29] W. Y. Hung, G. C. Fang, S. W. Lin, S. H. Cheng, K. T. Wong, T. Y. Kuo, and P. T. Chou, ‘‘The first tandem, all-exciplex-based WOLED,’’ Sci. Rep., 4, 5161 (2014).
    [30] X. K. Liu, Z. Chen, C. J. Zheng, C. L. Liu, C. S. Lee, F. Li, X. M. Ou, and X. H. Zhang, ‘‘Prediction and design of efficient exciplex emitters for high-efficiency,thermally activated delayed-fluorescence organic light-emitting diodes,’’ Adv. Mater., 27, 2378 (2015).
    [31] K. H. Kim, S. J. Yoo, and J. J. Kim, ‘‘Boosting triplet harvest by reducing nonradiative transition of exciplex toward fluorescent organic light-emitting diodes with 100% internal quantum efficiency,’’ Chem. Mater., 28, 1936 (2016).
    [32] D. Volz, ‘‘Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays,’’ J. Photonics Energy, 6(2), 020901 (2016).
    [33] M. Sarma and K. T. Wong, ‘‘Exciplex: An intermolecular charge-transfer approach for TADF,’’ J. Am. Chem. Soc., 10, 19279 (2018).
    [34] J. W. Sun, J. H. Lee, C. K. Moon, K. H. Kim, H. Shin, and J. J. Kim, ‘‘A fluorescent Organic Light-Emitting Diode with 30% External Quantum Efficiency,’’ Adv. Mater., 26, 5684 (2014).
    [35] X. K. Liu, Z. Chen, C. J. Zheng, M. Chen, W. Liu, X. H. Zhang, and C. S. Lee, ‘‘Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex,’’ Adv. Mater., 27, 2024 (2015).
    [36] B. Zhao, Y. Miao, Z. Wang, W. Chen, K. Wang, H. Wang, Y. Hao, B. Xu, and W. Li, ‘‘Highly efficient orange fluorescent OLEDs based on the energy transfer from bilayer interface exciplex,’’ Org. Electron., 37, 1 (2016).
    [37] W. Y Hunga, P. Y. Chianga, S. W. Linb, W. C. Tangb, Y. T. Chenb, S. H. Liub, P. T. Choub, Y. T. Hungb, and K. T. Wong, ‘‘Balance the carrier mobility to achieve high performance exciplex OLED using a new triazine-based acceptor,’’ ACS Appl. Mater. Interfaces, 8, 4811 (2016).
    [38] S. Yuan, X. Du, J. Zhao, W. Liu, H. Lin, C. Zheng, S. Tao, and X. Zhang, ‘‘High-performance red organic light-emitting devices based on an exciplex system with thermally activated delayed fluorescence characteristic,’’ Org. Electron., 39, 10 (2016).
    [39] W. Liu, C. J. Zheng, K. Wang, M. Zhang, D. Y. Chen, S. L. Tao, F. Li, Y. P. Dong, C. S. Lee, X. M. Ou, and X. H. Zhang, ‘‘High performance all fluorescence white organic light emitting devices with a highly simplified structure based on thermally activated delayed fluorescence dopants and host,’’ ACS Appl. Mater. Interfaces, 8, 32984 (2016).
    [40] J. Zhao, X. Du, S. Yuan, C. Zheng, H. Lin, and S. Tao, ‘‘Highly efficient green and red OLEDs based on a new exciplex system with simple structures,’’ Org. Electron., 43, 136 (2017).
    [41] H. G. Kim, K. H. Kim, C. K. Moon, and J. J. Kim, ‘‘Harnessing triplet excited states by fluorescent dopant utilizing codoped phosphorescent dopant in exciplex host for efficient fluorescent organic light emitting diodes,’’ Adv. Opt. Mater., 5, 1600749 (2017).
    [42] C. K. Moon, K. Suzuki, K. Shizu, C. Adachi, H. Kaji, and J. J. Kim, ‘‘Combined inter- and intramolecular charge-transfer processes for highly efficient fluorescent organic light-emitting diodes with reduced triplet exciton quenching," Adv. Mater., 29, 1606448 (2017).
    [43] H. Sasabe, R. Sato, K. Suzuki, Y. Watanabe, C. Adachi, H. Kaji, and J. Kido, ‘‘Ultrahigh power efficiency thermally activated delayed fluorescent OLEDs by the strategic use of electron-transport materials,’’ Adv. Opt. Mater., 6, 1800376 (2018).
    [44] C. J. Shih, C. C. Lee, T. H. Yeh, S. Biring, K. K. Kesavan, N. R. A. Amin, M. H. Chen, W. C. Tang, S. W. Liu, and K. T. Wong, ‘‘A versatile exciplex-forming co-host for improving efficiency and lifetime of fluorescent and phosphorescent organic light-emitting diodes,’’ ACS Appl. Mater. Interfaces, 10, 24090 (2018).
    [45] T. Chiba, Y. J. Pu, R. Miyazaki, K. i. Nakayama, H. Sasabe, and J. Kido, ‘‘Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,’’ Org. Electron., 12, 710 (2011).
    [46] S. H. Choa, S. W. Pyob, and M. C. Suha, ‘‘Low voltage top-emitting organic light emitting devices by using 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,’’ Synth. Met., 162, 402 (2012).
    [47] S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, and N. Peyghambarian, ‘‘Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,’’ J. Appl. Phys., 84, 2324 (1998).
    [48] T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, ‘‘Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy,’’ Appl. Phys. Lett., 73, 2763 (1998).
    [49] P. A. Serena, J. M. Soler, and N. García, ‘‘Work function and image-plane position of metal surfaces,’’ Phys. Rev. B, 37, 8701 (1988).
    [50] K. Seki, N. Hayashi, H. Oij, E. Ito, Y. Ouchi, and H. Ishii, ‘‘Electronic structure of organic/metal interfaces,’’ Thin Solid Films, 393, 298 (2001).

    無法下載圖示 全文公開日期 2024/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE