Author: |
李泓諭 Hong-Yu Li |
---|---|
Thesis Title: |
應用於IEEE 802.16e無線都會型網路之預測式動態節能機制設計 Design of Predictive and Dynamic Power Saving Mechanisms for the IEEE 802.16e Wireless MAN |
Advisor: |
馮輝文
Huei-Wen Ferng |
Committee: |
陳金蓮
Jean-Lien C. Wu 黎碧煌 none 林嘉慶 none 吳中實 none |
Degree: |
碩士 Master |
Department: |
電資學院 - 資訊工程系 Department of Computer Science and Information Engineering |
Thesis Publication Year: | 2008 |
Graduation Academic Year: | 96 |
Language: | 中文 |
Pages: | 50 |
Keywords (in Chinese): | 節能機制 、睡眠模式 、IEEE 802.16e |
Keywords (in other languages): | power saving mechanism, sleep mode, IEEE 802.16e |
Reference times: | Clicks: 448 Downloads: 2 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
為了實現無線都會型區域網路(WMAN)之多樣式行動服務,IEEE 802.16e標準被制訂以應用於支援固定用戶站 (Fixed Station)及行動用戶站 (Mobile Station)的寬頻無線存取系統 (Broadband Wireless Acess Systems)。由於行動用戶站都是以電池當做能量來源,因此能源節省在IEEE 802.16e成為非常重要的研究議題,所以IEEE 802.16e標準訂定三種不同的能源節省類型並以啟用睡眠模式的方式來達到節能效果。然而在其能源節省類型I之標準睡眠模式運作中,行動用戶站對於不同的訊務樣式 (Traffic Pattern)都使用固定的睡眠方式,亦即以最小睡眠區間進入睡眠模式,再以兩倍增長的方法增加其睡眠區間長度直至最大睡眠區間,因此在較低封包抵達速率的情況下,行動用戶站會浪費許多能源且遭遇長的封包延遲。為了改善此問題,本論文提出了三個預測式動態睡眠時間規劃節能機制,
亦即PDSTP-CL、 PDSTP-ED與PDSTP-LD,此三種節能機制利用預測之封包間隔時間動態地規劃行動用戶站之睡眠模式,讓行動用戶站可於適當的時間清醒以服務封包,而在其它時間中則儘量地處於睡眠狀態中,利用此方式,使得封包抵達的時候能快速地被服務,並且讓行動用戶站於等待封包抵達的過程中減少能源浪費,以達到同時改善封包延遲與能源節省的效果。透過模擬比較,我們所提之PDSTP-CL節能機制表現優於PDSTP-ED與PDSTP-LD節能機制,且於能源節省及封包延遲上PDSTP-CL都能表現優於IEEE 802.16e之標準機制以及其他文獻中的相關機制。
In order to realize various mobile services for the wireless metropolitan area network (WMAN), the IEEE 802.16e standard was proposed for the broadband wireless access system supporting the fixed stations and mobile stations (MSs).
Because MSs are powered by batteries, energy conservation becomes an extremely important research issue in IEEE 802.16e which defines three different types of power saving class and reaches the energy conservation goal by adopting the sleep mode. However, MSs, which adopt the standard sleep mode operation of power saving class of type I, may waste a lot of energy and suffer long packet delay when the traffic arrival rate is low since the same sleep mode is used for different traffic patterns. That is, MSs enter the sleep mode with the minimal sleep period and then double the sleep period as the sleep cycle increases until the maximal sleep period is reached. To solve this problem, we propose three predictive and dynamic sleep time planning (PDSTP) power saving mechanisms in this thesis, i.e., PDSTP-CL, PDSTP-ED, and PDSTP-LD, to dynamically plan the sleep mode for MSs according to the predicted inter-packet arrival time, and to let MSs wake up to receive packets at an appropriate time instant while sleep as much as possible before this time instant. By using this way, queued packets can be served faster and energy consumption can be reduced, so that the packet delay can be reduced and the energy efficiency can be improved simultaneously. Through simulations, we show that PDSTP-CL outperforms PDSTP-ED, PDSTP-LD, the standard mechanism of IEEE 802.16e, and other related schemes in the literature in terms of energy efficiency and packet delay.
[1] L. Burgstahler and M. Neubauer, “New modifications of the exponential moving average algorithm for bandwidth estimation,” in Proc. ITC Specialist Seminar '02, 2002.
[2] S. K. Cho and Y. G. Kim, “Improving power savings by using adaptive initial-sleep window in IEEE802.16e,” in Proc. IEEE VTC '07, 2007, pp. 1321 - 1325.
[3] R. Cohen, L. Katzir, and R. Rizzi, “On the trade-o_ between energy and multicast efficiency in 802.16e-like mobile networks,” IEEE Trans. Mobile Computing, vol. 7, no. 3, pp. 346 - 357, Mar. 2008.
[4] K. Han and S. Choi, “Performance analysis of sleep mode operation in IEEE
802.16e mobile broadband wireless access systems,” in Proc. IEEE VTC '06,
2006, pp. 1141 - 1145.
[5] S. C. Huang, R. H. Jan, and C. Chen, “Energy efficient scheduling with QoS
guarantee for IEEE 802.16e broadband wireless access networks,” in Proc. ACM
IWCMC '07, 2007, pp. 547 - 552.
[6] IEEE Computer Society LAN MAN Standards Committee, “IEEE Std 802.11:
Wireless LAN medium access control and physical layer specifications,” 1999.
[7] IEEE 802.16-2001, “IEEE standard for local and metropolitan area networks - Part 16: Air interface for fixed broadband wireless access systems,” 2002.
[8] IEEE 802.16-2004, “IEEE standard for local and metropolitan area networks - Part 16: Air interface for fixed broadband wireless access systems,” 2004.
[9] IEEE 802.16e-2005, “IEEE standard for local and metropolitan area networks
Part 16: Air interface for fixed and mobile broadband wireless access systems
amendment 2: physical and medium access control layers for combined fixed
and mobile operation in licensed bands and corrigendum 1,” 2006.
[10] J. Jang, K. Han, and S. Choi, “Adaptive power saving strategies for IEEE
802.16e mobile broadband wireless access,” in Proc. IEEE APCC '06, 2006,
pp. 1 - 5.
[11] D. G. Jeong and W. S. Jeon, “Performance of adaptive sleep period control
for wireless communications systems,” IEEE Trans. Wireless Communications,
vol. 5, no. 11, pp. 3012 - 3016, Nov. 2006.
[12] M. G. Kim, J. Y. Choi, and M. Kang, “Adaptive power saving mechanism
considering the request period of each initiation of awakening in the IEEE
802.16e system,” IEEE Commun. Lett., vol. 12, no. 2, pp. 106 - 108, Feb. 2008.
[13] S. J. Kwon, Y. W. Chung, and D. K. Sung, “Queueing model of sleep-mode
operation in cellular digital packet data,” IEEE Trans. Vehicular Technology,
vol. 52, no. 4, pp. 1158 - 1162, Jul. 2003.
[14] N. H. Lee and S. Bahk, “MAC sleep mode control considering downlink traffic pattern and mobility,” in Proc. IEEE VTC '05, 2005, pp. 2076 - 2080.
[15] J. W. Lee, W. S. Jeon, and D. G. Jeong, “Power saving with p-persistent sleep decision for ubiquitous mobile communications,” in Proc. IEEE VTC '06, 2006, pp. 633 - 637.
[16] K. Lei and D. H. K. Tsang, “Performance study of power saving classes of type I and II in IEEE 802.16e,” in Proc. IEEE LCN '06, 2006, pp. 20 - 27.
[17] K. Lei and D. H. K. Tsang, “Optimal selection of power saving classes in IEEE 802.16e,” in Proc. IEEE WCNC '07, 2007, pp. 1836 - 1841.
[18] N. M. P. Nejatian and M. M. Nayebi, “Evaluating the effect of non-Poisson
traffic patterns on power consumption of sleep mode in the IEEE 802.16e MAC,”
in Proc. IEEE WOCN '07, 2007, pp. 1 - 5.
[19] D. T. T. Nga, M. G. Kim, and M. Kang, “Delay-guaranteed energy saving
algorithm for the delay-sensitive applications in IEEE 802.16e systems,” IEEE
Trans. Consumer Electronics, vol. 53, no. 4, pp. 1339 - 1347, Nov. 2007.
[20] J. L. Shi, G. F. Fang, Y. Sun, G. H. Zhou, Z. C. Li, and E. Dutkiewicz, “WLC17-5: Improving mobile station energy efficiency in IEEE 802.16e WMAN by burst scheduling,” in Proc. IEEE GLOBECOM '06, 2006, pp. 1 - 5.
[21] O. J. Vatsa, M. Raj, K. Ritesh, D. Panigrahy, and D. Das, “Adaptive power
saving algorithm for mobile subscriber station in 802.16e,” in Proc. IEEE COM-
SWARE '07, 2007, pp. 1 - 7.
[22] Y. Xiao, H. Li, Y. Pan, K. Wu, and J. Li, “On optimizing energy consumption for mobile handsets,” IEEE Trans. Vehicular Technology, vol. 53, no. 6, pp.1927 - 1941, Nov. 2004.
[23] Y. Xiao, “Energy saving mechanism in the IEEE 802.16e wireless MAN,” IEEE Commun. Lett., vol. 9, no. 7, pp. 595 - 597, Jul. 2005.
[24] J. F. Xiao, S. H. Zou, B. Ren, and S. D. Cheng, “WLC17-6: An enhanced
energy saving mechanism in IEEE 802.16e,” in Proc. IEEE GLOBECOM '06,
2006, pp. 1 - 5.
[25] Y. Xiao, “Performance analysis of an energy saving mechanism in the IEEE
802.16e wireless MAN,” in Proc. IEEE CCNC '06, 2006, pp. 406 - 410.
[26] F. M. Xu, W. Zhong, and Z. Zhou, “A novel adaptive energy saving mode in
IEEE 802.16e system,” in Proc. IEEE MILCOM '06, 2006, pp. 1 - 6.
[27] S. R. Yang, S. Y. Yan, and H. N. Hung, “Modeling UMTS Power Saving with
Bursty Packet Data Traffic,” IEEE Trans. Mobile Computing, vol. 6, no. 12,
pp. 1398 - 1409, Dec. 2007.
[28] S. Q. Zhu and T. L. Wang, “Enhanced power efficient sleep mode operation for IEEE 802.16e based WiMAX,” in Proc. IEEE MWS '07, 2007, pp. 43 - 47.
[29] S. Q. Zhu, X. Y. Ma, and L. J.Wang, “A delay-aware auto sleep mode operation for power saving WiMAX,” in Proc. IEEE ICCCN '07, 2007, pp. 997 - 1001.