簡易檢索 / 詳目顯示

研究生: 陳亮均
Liang-Chun Chen
論文名稱: 應用於行動WiMAX通訊系統之睡眠傾聽交錯排程機制
Scheduling Mechanisms of Interleaved-Sleep-Listen for Mobile WiMAX Communication Systems
指導教授: 賴源正
Yuan-Cheng Lai
口試委員: 孫宏民
Hung-Min Sun
程榮祥
Rung-Shiang Cheng
徐俊傑
Chiun-Chieh Hsh
林伯慎
Bor-Shen Lin
學位類別: 博士
Doctor
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 68
中文關鍵詞: IEEE 802.16e節能交錯最大未使用的時間間隔資源排程
外文關鍵詞: IEEE 802.16e, power-saving, interleaved, MUI, resource scheduling
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在寬頻無線存取網路中,當行動裝置沒有在傳送及接收資料時,其可進入睡眠模式以節省電量。IEEE 802.16e標準已根據睡眠模式運作方式定義了三種節能的模式。然而,當行動裝置具有多個連線且在連線中沒有一致的睡眠時間時,節能效率會不太理想。本論文提出一個睡眠傾聽交錯的演算法(Interleaved-Sleep-Listen, ISL)。ISL利用交錯的排程來同步連線之睡眠時間,藉以獲得最大未使用時間區間(Maximum Unavailable Interval, MUI)。模擬的結果顯示ISL提升了在多個連線情況下之節能有效性。
    睡眠/傾聽時間必須藉由基地台(Base Station, BS)來安排至正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)的訊框裡。如果在無線電資源不夠的情況下,BS將無法充分的分配OFDM時槽給MS來傳送封包資料。因此本論文進一步提出一個稱之為睡眠傾聽交錯碰撞避免的演算法(Interleaved-Sleep-Listen with Collision Avoidance, ISL/CA)。此方法可同時解決資源分配與節能有效性的問題。ISL/CA藉以分配較後的OFDM時槽,以滿足頻寬請求大於訊框容量之封包,並且運用交錯的排程方式達到同步之睡眠時間,以降低行動裝置的耗電量。模擬的結果顯示相較於之前的方法,ISL/CA在多連線的情況下具有較好的產能且改進節能的有效性。


    In broadband wireless access (BWA) networks, the power consumption of the mobile devices can be saved by allowing the nodes to enter the sleep mode when they are not transmitting or receiving data. IEEE 802.16e standard has defined three power-saving classes (PSCs) according to the sleep modes. However, the power-saving efficiency is not acceptable because the sleep windows of multiple connections are not overlapping when these connections coexist in a mobile station (MS). Therefore, this dissertation proposes an Interleaved-Sleep-Listen (ISL) algorithm, which synchronizes the overlapping sleep windows with interleaving scheduling to obtain the maximum unavailability interval (MUI). The simulation results show that ISL improves the power-saving efficiency under the condition of multiple connections existing in a MS.
    The sleep/listen windows must be scheduled by the base station (BS) in unit of an Orthogonal Frequency Division Multiplexing (OFDM) frame. If the radio resources are insufficient, the BS can not allocate enough slots for the packets that should be transmitted in an OFDM frame to a MS. Therefore, this dissertation further proposes a method - Interleaved-Sleep-Listen with Collision Avoidance (ISL/CA) algorithm. This method addresses both resource allocation and power-saving efficiency in IEEE 802.16e networks. ISL/CA allocates latter OFDM slots to satisfy the packets whose required bandwidth is larger than the capacity of an OFDM frame and synchronizes the overlapping sleep windows with interleaving scheduling to reduce the power consumption of the mobile station. Simulation results show that the superior performance of ISL/CA and improves the power-saving efficiency, compared with the previous algorithms, in the condition of multiple connections existing in a MS.

    摘要 I ABSTRACT II 誌謝 IV TABLE OF CONTENTS V TERMS VII LIST OF FIGURES VIII LIST OF TABLES IX Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation and Contribution 3 1.3. Organization of This Dissertation 5 Chapter 2. Research Background 6 2.1. Sleep Mode Control Functions 6 2.2. Power-Saving Classes (PSCs) Schemas 7 2.3. Related Studies on Power-Saving Algorithms for IEEE 802.16e Networks 9 Chapter 3. An Interleaved-Sleep-Listen Algorithm for Power-Saving Scheduling in IEEE 802.16e Networks 14 3.1. Notations 14 3.2. ISL Algorithm 16 3.3. Scheduling Sequence of Connections 19 3.4. Example of ISL Algorithm 22 3.5. Simulation and Evaluation 25 3.5.1. Simulation Environment 25 3.5.2. Number of Connections 26 3.5.3. Sleep Ratio 28 3.5.4. Number of Connections (Scheduling Sequence of Connections) 29 3.6. Summary 30 Chapter 4. Energy Efficient Interleaved-Sleep-Listen with Collistion Avoidance Algorithm in IEEE 802.16e Networks 32 4.1. Notations 33 4.2. ISL/CA Algorithm 34 4.3. Priority of Resource Scheduling 37 4.4. Example of ISL/CA Algorithm 39 4.5. Simulation and Evaluation 43 4.5.1. Simulation Environment 43 4.5.2. Number of Connections 44 4.5.3. Sleep Ratio 46 4.5.4. Number of Connections (Priority of Resource Scheduling) 47 4.6. Summary 48 Chapter 5. Conclusions and Future Works 50 5.1. Conclusions 50 5.2. Future Works 52 References 54 Publication List 57

    [1].IEEE, “IEEE standard for local and metropolitan area networks part 16:
    air interface for fixed broadband wireless access systems,” IEEE
    Standard, Dec. 2001.
    [2].IEEE, “IEEE standard for local and metropolitan area network part 16: air
    interface for fixed broadband wireless access systems,” IEEE Standard,
    Oct. 2004.
    [3].IEEE, “IEEE standard for local and metropolitan area networks part 16:
    air interface for fixed and mobile broadband wireless access systems,
    amendment 2: physical and medium access control layers for combined fixed
    and mobile operation in licensed bands and corrigendum1,” IEEE Standard
    802.16e-2005.
    [4].S.-L. Tsao and Y.-L. Chen, “Energy-efficient packet scheduling algorithm
    for real-time communications in a mobile WiMAX system,” IEEE Computer
    Communications, pp. 2350-2359, 2008.
    [5].S.-C. Huang, R.-H. Jan, and C. Chen, “Energy efficient scheduling with
    QoS guarantee for IEEE 802.16e broadband wireless access networks,” IEEE
    International Conference on Wireless Communications and Mobile Computing,
    pp. 547-552, 2007.
    [6].T.-C. Chen, Y.-Y. Chen, and J.-C Chen, “Maximizing unavailability
    interval for energy saving in IEEE 802.16e wireless MANs,” IEEE
    Transactions on Mobile Computing, vol. 8, no. 4, pp. 475-487, Apr. 2009.
    [7].C. Ding, D. Pei, and A. Salomaa, Chinese remainder theorem-applications in
    computing, coding, cryptography, World Scientific, 1996.
    [8].I. Niven, H.S. Zuckerman, and H.L. Montgomery, The theory of numbers, John
    Wiley & Sons, 1991.
    [9].Y. Xiao, “Energy saving mechanism in the IEEE 802.16e wireless MAN,”
    IEEE Communications Letters, vol. 9, no. 7, pp. 595-597, July 2005.
    [10].Y. Zhang and M. Fujise, “Energy management in the IEEE 802.16e MAC,”
    IEEE Communications Letters, vol. 10, no. 4, pp. 311-313, Apr. 2006.
    [11].M.-G. Kim, J.-Y. Choi, and M. Kang, “Adaptive power-saving mechanism
    considering the request period of each initiation of awakening in the
    IEEE 802.16e system,” IEEE Communications Letters, vol. 12, no. 2, pp.
    106-108, Feb. 2008.
    [12].D.T.T. Nga, M.-G. Kim, and M. Kang, “A novel energy saving algorithm
    with frame response delay constraint in IEEE 802.16e,” IEEE Transactions
    on Communications, vol. E91-B, no. 4, pp. 1190-1193, Apr. 2008.
    [13].D.T.T. Nga, M.-G. Kim, and M. Kang, “Delay-guaranteed energy saving
    algorithm for the delay-sensitive applications in IEEE 802.16e systems,”
    IEEE Transaction on Consumer Electronics, vol. 53, no. 4, pp. 1339-1347,
    Nov. 2007.
    [14].M.-G. Kim, J.-Y. Choi, and M. Kang, “Adaptive power management mechanism
    considering remaining energy in IEEE 802.16e,” IEEE Transactions on
    Communications, vol. e90-b, no. 9, pp. 2621-2624, Sep. 2007.
    [15].H.-L. Tseng, Y.-P. Hsu, C.-H. Hsu, P.-H. Tseng, and K.-T. Feng, “A
    maximal power-conserving scheduling algorithm for broadband wireless
    networks,” IEEE Wireless Communications and Networking Conference, pp.
    1877-1882, 2008.
    [16].J.-J. Chen, J.-M. Liang, and Y.-C. Tseng, “An Energy Efficient Sleep
    Scheduling Considering QoS Diversity for IEEE 802.16e Wireless
    Networks,” IEEE International Conference on Communications, 2010.
    [17].L. Tian, Y. Yang, J. Shi, E. Dutkiewicz, and G. Fang, “Energy efficient
    integrated scheduling of unicast and multicast traffic in 802.16 WMANs,”
    IEEE Global Telecommunications Conference, 2007.
    [18].T.-C. Chen and J.-C Chen, “Extended maximizing unavailability interval
    (eMUI):maximizing energy saving in IEEE 802.16e for mixing type I and
       type II PSCs,” IEEE Communications Letters, vol. 13, no. 2, pp. 151-153,
       Feb. 2009.
    [19].K. Han and S. Choi, “Performance analysis of sleep mode operation in
    IEEE 802.16e mobile broadband wireless access systems,” IEEE Vehicular
    Technology Conference, vol. 3, pp. 1141-1145, 2006.

    無法下載圖示 全文公開日期 2018/07/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE