簡易檢索 / 詳目顯示

研究生: 楊治諺
Chih-Yan Yang
論文名稱: 應用於400-800 MHz頻譜感測系統之射頻前端電路設計
A RF front end circuit for 400-800 MHz Spectrum Sensing System
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 曾昭雄
Chao-Hsiung Tseng
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 頻譜感測射頻前端電路低雜訊放大器混頻器
外文關鍵詞: Spectrum sensing, RF front-end, Low Noise Amplifier, Mixer
相關次數: 點閱:277下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用TSMC CMOS 0.18 μm 1P6M製程,設計並實作一個應用於400-800MHz頻譜感測系統的射頻(RF)前端電路。此前端電路由一個低雜訊放大器及一混頻器組成。低雜訊放大器將接收到的微小訊號放大後,將訊號傳送至混頻器降頻至中頻訊號為200 kHz。此頻譜感測系統之感測範圍適用於醫療設備無線電通訊服務、數位電視頻帶及超高頻(UHF)頻段。
    本論文設計之射頻前端電路,射頻前端電路整體功率消耗為14.85 mW,電路增益27-28 dB、線性度約為-14~ -15 dBm及雜訊指數約為4.87-6 dB。其子電路低雜訊放大器功率消耗為12.42 mW,S21為12.55-12.07 dB、線性度約為-2~ -3 dBm及雜訊指數約為3.3-4.0 dB。子電路混頻器功率消耗為2.43 mW,電路增益約為10-11dB、線性度約為-7~ -8 dBm及雜訊指數約為18-19dB。


    In this thesis, a radio frequency front end circuit for 400-800 MHz spectrum sensing system is designed and implemented by using TSMC 0.18 μm 1P6M CMOS technology. The radio frequency front end circuit consists of a low noise amplifier (LNA) and a down-convert micromixer. The small signal is amplified by the low noise amplifier, then is applied to the micromixer down-converted to Intermediate Frequency at 200 kHz. The spectrum sensing system is applied to medical device radiocommunications service (Medradio), DTV band and UHF band.
    The RF front end circuit in this thesis, it consumes 14.85 mW. Measurements of RF front end’s gain, linearity and noise figure are 27-28 dB, -14~-15 dBm and 4.87-6 dB. The LNA consumes 12.42 mW. Measurements of the LNA’s S21, linearity and noise figure are 12.55-12.07 dB, -2~-3 dBm and 3.3-4.0 dB. The micromixer consumes 2.43 mW. Measurements of the micromixer’s gain, linearity and noise figure are 10-11 dB, -7~-8 dBm and 18-19 dB.

    摘要 i Abstract iii 誌謝 v 目錄 vii 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1.1 簡介 1 1.2 章節簡介 2 第二章 應用於頻譜感測系統之前端電路設計 4 2.1簡介 4 2.2電路原理與架構 5 2.2.1低雜訊放大器 5 2.2.2 混頻器 6 2.3模擬結果 8 2.3.1低雜訊放大器模擬結果 8 2.3.2混頻器模擬結果 16 2.3.3低雜訊放大器串接混頻器模擬結果 25 第三章 應用於頻譜感測系統之前端電路佈局與量測 36 3.1簡介 36 3.2混頻器 36 3.2.1晶片佈局 36 3.2.2混頻器量測 38 3.3低雜訊放大器 46 3.3.1晶片佈局 46 3.3.2低雜訊放大器量測 47 3.4低雜訊放大器串接混頻器 55 3.4.1晶片佈局 55 3.4.2低雜訊放大器串接混頻器量測 57 3.5結論 63 第四章 總結與未來展望 67 參考文獻 69

    [1] J. Mitola, “Cognitive radio: An integrated agent architecture for software defined radio”, Doctor of Technology, Royal Inst. Technol. (KTH), Stockholm, Sweden, 2000.
    [2] D. Cabric, S.M. Mishra, R.W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 7-10 Nov. 2004, vol.1, pp. 772 – 776.
    [3] J. Benko, Y. C. Cheong, C. Cordeiro, W. Gao, C.-J. Kim, H.-S. Kim, S. Kuffner, J. Laskar, and Y.-C. Liang, A PHY/MAC Proposal for IEEE 802.22 WRAN Systems Mar.2006Online].Available:http://www.ieee802.org/22/Meeting_documents/2006_Mar/22-06-0005-05-0000_ETRI-FT-I2R-Motorola-Philips-Samsung-Thomson_Proposal.ppt
    [4] J. Lunden, V. Koivunen, A. Huttunen, and H. V. Poor, “Spectrum Sensing in Cognitive Radios Based on Multiple Cyclic Frequencies,” 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Aug. 2007, pp.37 – 43.
    [5] M. Kitsunezuka, H. Kodama, N. Oshima, K. Kunihiro, T. Maeda, and M. Fukaishi, “A 30 MHz–2.4 GHz CMOS receiver with integrated RF filter and dynamic-range-scalable energy detector for cognitive radio,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1084–1093, May 2012.
    [6] M. S. Oude Alink, E. A. M. Klumperink, M. C. M. Soer, A. B. J. Kokkeler, and B. Nauta, “A CMOS-Compatible Spectrum Analyzer for Cognitive Radio Exploiting Crosscorrelation to Improve Linearity and Noise Performance,” IEEE Trans .Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 479–492, Mar. 2012.
    [7] C.-J. Li, F.-K. Wang, T.-S. Horng and K.-C. Peng, “A Novel RF Sensing Circuit Using Injection Locking and Frequency Demodulation for Cognitive Radio Applications,” IEEE Trans. Microwave Theory and Techniques, vol. 57, no. 12, pp. 3143–3152, Dec. 2009.
    [8] J. Park, T. Song, J. Hur, S. M. Lee, J. Choi, K. Kim, K. Lim, C.-H. Lee, H. Kim, and J. Laskar, “A fully integrated uHF-band CMOS receiver with multi-resolution spectrum sensing (MRSS) functionality for IEEE 802.22 cognitive radio applications,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 258–268, Jan. 2009.
    [9] T. Song, J. Park, S.-M. Lee, J. Choi, K. Kim and C.-H. Lee, “A 122-mW Low-Power Multiresolution Spectrum-Sensing IC With Self-Deactivated Partial Swing Techniques,” IEEE Trans .Circuits and Systems, vol. 57, no. 3, pp. 188–192, Mar. 2010.
    [10] D. Lin, H. Chae, L. Li and M. P. Flynn, “A Low-Power Adaptive Receiver Using Discrete-Time Spectrum Sensing,” IEEE Trans. Microwave Theory and Techniques, vol. 61, no. 3, pp. 1338–1346, March 2013.
    [11] F. Bruccoleri, A. M. Klumperink and B. Nauta, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling", IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275-282, 2004
    [12] J. Park, "Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers", IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4372-4380, 2006
    [13] B. Gilbert, "The MICROMIXER: A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage", IEEE J. Solid-State Circuits, vol. 32, Sep. 1997.
    [14] S. Y. Lin, S. W. Sun, L. W. Yang, "A High Linearity CMOS Micromixer for UWB Systems, " Asia-Pacific Microwave Conference (APMC), Dec. 2007, pp. 1-4
    [15] Z. Y. Sun and Y. P. Yan "A broadband pHEMT image-reject mixer", Electromagnetics (iWEM), 2013 IEEE International Workshop on, On page(s): 80 - 83
    [16] C.-F. Li and P.-C. Huang, "A 60 dB harmonic mixing reduction mixer for wideband applications", IEEE MTT-S Int. Microw. Symp. Dig., pp. 559-562, 2008
    [17] Y. Yu , Y. Yang and Y. Chen, "A compact wideband CMOS low noise amplifier with gain flatness enhancement", IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 502-509, 2010
    [18] S. Lou and H. C. Luong, "A wideband CMOS variable-gain low-noise amplifier for cable TV tuners", IEEE Asian Solid-State Circuit Conf. Dig., pp. 181-184, 2005
    [19] D. Im , I. Nam , H.-T. Kim and K. Lee, "A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner", IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 686-696, 2009
    [20] S. B. T. Wang , A. M. Niknejad and R. W. Brodersen, "Design of a sub-mW 960-MHz UWB CMOS LNA", IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2449-2456, 2007
    [21] D. Im, "A wideband digital TV receiver front-end with noise and distortion cancellation", IEEE Trans. Circuits Syst. I, vol. 61, no. 2, pp. 562-572, 2014
    [22] Liu, Lanqi; Zhang, Kefeng; Ren, Zhixiong; Lu, Zhaojing; Zou, Xuecheng "0.05–2.5GHz wideband RF front-end exploiting noise cancellation and multi-gated transistors", Microwave Conference (APMC), 2015 Asia-Pacific, On page(s): 1 - 3 Volume: 2, 6-9 Dec. 2015
    [23] A. Amer, E. Hegazi, and H. F. Ragaie, "A 90-nm wideband merged CMOS LNA and mixer exploiting noise cancellation," IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323-328, Feb. 2007. (Pubitemid 46374517)
    [24] S. Lerstaveesin , M. Gupta , D. Kang and B.-S. Song, "A 48–860 MHz CMOS low-IF direct-conversion DTV tuner", IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2013-2024, 2008
    [25] 張國, "400-800 MHz頻譜感測系統",國立台灣科技大學電機所碩士論文,2014

    無法下載圖示 全文公開日期 2021/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE