簡易檢索 / 詳目顯示

研究生: 黃心煦
Hsin-Hsu Huang
論文名稱: 互補式金氧半電晶體降頻器和壓控振盪器設計與應用於正交分頻多工通信系統之RF設計要點
The CMOS Down-Conversion Mixer And VCO Design With RF Design Issues in OFDM System
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 陳凰美
none
楊賜麟
none
趙良君
none
鄧恒發
none
李三良
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 101
中文關鍵詞: 正交分頻多工通信系統.射頻前端電路.BALUN降頻器LC交叉耦合振盪器
外文關鍵詞: LC-tank VCO, OFDM system. RF front end., BALUN, Down-Conversion Mixer
相關次數: 點閱:256下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,描述了一個3.5GHz頻段降頻器和2.5GHz LC交叉耦合振盪器設計。IC製作是使用台灣積體電路公司的0.35μm 2P4M製程。降頻器使用switching-Gm的方法來獲得比標準Gilbert Cell降頻器還高的轉換增益及較低的所需LO功率,同時分別在RF和LO輸入端內建變壓器型式BALUN來減少因使用外部BALUN產生之損耗。中頻端也使用一個簡單PMOS current mirror來產生單端輸出,避免使用外部中頻BALUN。為驗證線性度,使用OFDM QAM信號之量測結果也一并呈現作為參考。

    至於LC交叉耦合振盪器,它是標準型PMOS交叉耦合對,使用了inversion模式之變容器,並使用PMOS電流源和2p旁路電容來減少電源雜訊和干擾,以期降低phase noise。

    另一方面,如1.2節所敘述之OFDM系統射頻前端電路設計要點,可以對此降頻器和振盪器之性能有一個較好的了解及參考。


    In this thesis, both 3.5GHz band down-conversion mixer and 2.5GHz LC-tank voltage-controlled oscillator (VCO) are described. The two chips are fabricated by using the TSMC 0.35μm 2P4M process. The mixer uses switching-Gm means to achieve the higher conversion gain and lower LO power needed than standard Gilbert Cell mixer, at the same time, with built-in RF and LO BALUN of transformer type to reduce the off-chip BALUN loss of using. The output IF is also transformed to single end port by a simple PMOS current mirror load for avoiding using IF BALUN, the results of measurement by OFDM QAM signal testing are also presented for verifying the linearity as reference.

    As to the LC-tank VCO, it is standard type with cross-coupled PMOS pair, inversion-mode PMOS varactors and the using of the PMOS current source and 2pF bypass capacitor to reduce the power noise and interference so as to reach to lower phase noise.

    On the other hand, with the design issues of RF front end in OFDM system as described in section 1.2, this can contribute to a better understanding and reference for the performance of both mixer and VCO.

    Chapter 1 The Overview On OFDM System and RF System. Chapter 2 LC-Tank VCO Design. Chapter 3 Mixer ( I ). Chapter 4 Mixer ( II ). Chapter 5 Mixer Design. Chapter 6 Conclusion. References. Appendix A.

    [1] T. Pollet, M. van Bladel, M. Moeneclaey, “BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wienner Phase Noise,” IEEE Transactions on Communication, Vol 43, No. 2/3/4, , February-April 1995, pp. 191-193.
    [2] B. Sklar, Digital Communications -Fundamentals and Applications, Prentice-Hall, second edition 2001.
    [3] Louis Litwin,“The principles of OFDM, “ RF Design, January 2001, pp.30-48.
    [4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [5] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [6] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 2001.
    [7] A. Hajimiri, and T. H. Lee, The Design of Low Noise Oscillators, Kluwer Academic Publishers, 1999.
    [8] A. Hajimiri, and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE Journal Solid-State Circuits, vol. 34, May 1999, pp 717-724.
    [9] S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE Journal Solid-State Circuits, vol. 37, August 2002, pp 1003-1011.
    [10] P. Andreani, H. Sjoland, “Tail current noise suppression in RF CMOS VCOs,” IEEE Journal Solid-State Circuits, vol.37, March, 2002, pp.342-348.
    [11] J. Craninckx, and M.S.J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal Solid-State Circuits, vol. 32, May 1997, pp 736-744.
    [12] B. De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE Journal Solid-State Circuits, vol. 35, July 2000, pp 1034-1038.
    [13] S.S. Mohan, M. Del M. Hershenson, S.P. Boyd, T.H. Lee, “ Simple accurate expressions for planar spiral inductances,” IEEE Journal Solid-State Circuits, vol. 34, October 1999, pp 1419-1424
    [14] J.R. Long, “Monolithic transformers for silicon RF IC design,’ IEEE Journal Solid-State Circuits, vol. 35, September 2000, pp 1368-1382

    [15] M. Danesh, J.R. Long, “Differentially driven symmetric microstrip inductors,” IEEE Transactions MTT, vol. 50, January, 2002, pp. 332-341.
    [16] C.P. Yue, C. Ryu, J. Lau, T. H. Lee, and S. S. Wong, “A physical model for planar spiral inductors on silicon,” in IEDM Technique Digest, December 1996, pp. 155-158.
    [17] J.R. Long, and M.A. Copeland, ” The modeling, characterization, and design of monolithic inductors for silicon RF IC's,” IEEE Journal Solid-State Circuits, vol. 32, March 1997, pp. 357-369.
    [18] P. Andreani, and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal Solid-State Circuits, vol. 35, June 2000, pp. 905-910.
    [19] S.A. Mass, Microwave Mixer, Artech-House, Norwood MA, 1993.
    [20] D.M. Pozar, Microwave Engineering, 2nd edition, John Wiley & Sons Inc. 1998.
    [21] B.Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE Journal Solid-State Circuit, vol. SC-3, December 1968, pp. 365-373.
    [22] Q. Li and J.S. Yuan, “Linearity analysis and design optimization for 0.18µm CMOS RF mixer,” in IEEE Proceedings on Circuits, Devices and Systems, April 2002, pp. 112–118.
    [23] S. Yue, “Linearization techniques for mixers”, Analog circuit design Course, April 9, 2001.
    [24] P. Quinn, “A cascode amplifier nonlinearity correction technique,” Dig. Tech. Papers, ISSCC Conference, vol. XXIV, 1981.
    [25] S. Simpkins and W. Gross, “ Cascomp Feedforward Error Correction in High Speed Amplifier Design,” IEEE Journal Solid-State Circuits, vol. SC-18, No. 6, December 1983, pp. 762-764.
    [26] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Low voltage performance of a microwave CMOS Gilbert cell mixer”, IEEE Journal Of Solid-State Circuits, Vol.32, No. 7, July 1997, pp. 1151-1155.
    [27] G. Fraello, G. Palmisano, ” Low voltage folded-mirror mixer,” Electronics Letters, vol, 33, No.21 9th, October 1997, pp. 1780-1781.
    [28] K. Kimura, ” Some circuit design techniques using two cross-couple, emitter-coupled pairs,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol.41, No.5, May 1994.
    [29] G. Kathiresan, “A Low Voltage Bulk Driven Downconversion Mixer Core,” IEEE Proceedings of the International Symposium on Circuits and Systems, vol. 2, 1999, pp. 598-601.

    [30] E. Abou-Allam, J.J. Nisbet, M.C. Maliepaard, ”Low-Voltage 1.9-GHz Front-End Receiver in 0.5-u CMOS technology”, IEEE Journal of Solid-State Circuits, Volume 36, Issue 10, October 2001, pp.1434 – 1443.
    [31] S.C. Li, R. Chien, J. Chien and K. Lin, “A Simple Architecture of Low Voltage GHz BiCMOS our-Quadrant Analogue Multiplier Using Complementary Voltage Follower,” IEEE Proceedings of the Asia and South Pacific-Design Automation Conference, 1998, pp.13-18.
    [32] J.P. Maligeorogos, J.R. Long, “A Low-Voltage 5.1-5.8-GHz Image-Reject Down-converter RF IC,” IEEE Journal Solid-State Circuits, vol. 35, No. 9, September 2000, pp. 1320-1328.
    [33] K. Nimmagadda, G.M. Rebeiz, “A 1.9GHz Double-Balanced Sub-harmonic Mixer for Direct Conversion Receivers,” Radio Frequency Integrated Circuits Symposium, 2001, pp. 253-256.
    [34] N. Marchand, “Transmission-Line Conversion”, Electronics, December 1944, pp. 142-145.
    [35] E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk, B. Nauta,” A CMOS Switched Transconductor Mixer,“ IEEE Journal Solid-State Circuits, vol. 9, No. 8, August 2004, pp. 1231-1240.

    QR CODE