簡易檢索 / 詳目顯示

研究生: 胡誌廷
Chih-Ting Hu
論文名稱: 新型雙回授LC諧振槽壓控震盪器與環形壓控震盪器溫度補償效應之研究
A New-Type Double Feedback LC-Tank VCO and The Study of Temperature Compensation Effect with Ring VCO
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 趙良君
Liang-Chun Chao
范慶麟
Ching-Lin Fan
徐敬文
Ching-Wen Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 93
中文關鍵詞: 壓控震盪器LC諧振槽溫度補償
外文關鍵詞: VCO, LC-Tank, Temperature Compensation
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成三個主題。第一個部份是環形壓控振盪器的理論架構與溫度補償的晶片設計實作與量測,第二個部份是2.4GHz電感諧振槽壓控震盪器的晶片設計實作與量測,第三個部份是2.4GHz 除頻器的晶片設計實作與量測。除了2.4GHz 除頻器所使用的是UMC 0.18um COMS 1P6M製程,其餘的電路所使用是TSMC 0.35um CMOS 2P4M製程,且利用Spectre RF軟體來進行電路模擬。未來目標希望能整合振盪器與除頻器的概念,且能使用於PLL電路或相關的應用,使其能呈現出更好的電路特性。


    This thesis is mainly composed of three topics. The first topic is the design, implementation and measurement of a ring voltage-controlled oscillator (VCO) with temperature compensation structure. The second topic is the design, implementation and measurement of a 2.4GHz LC-tank VCO. The third topic is the design, implementation and measurement of a 2.4GHz frequency divider. In first two circuits of whole three designs, ring VCO with temperature compensation structure and 2.4GHz LC-tank, they are fabricated by TSMC 0.35um CMOS 2P4M, except the 2.4GHz frequency divider is fabricated by UMC 0.18um COMS 1P6M. All circuits in this thesis are simulated using by Spectre RF CAD. In future work, we hope to integrate the concepts of oscillator and divider, and could be utilized in the phase-locked loop and so on.

    1 Introduction 1 1.1 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Preliminary 3 2.1 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 FundamentalKnowledge of LCOscillator . . . . . . . . . . . . . . . 3 2.1.2 FundamentalKnowledge of RingOscillator . . . . . . . . . . . . . . 5 2.1.3 FundamentalKnowledge of Voltage-ControlledOscillator . . . . . . 9 2.2 Phase Noise Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Phase Noise of LC-Tank Oscillator . . . . . . . . . . . . . . . . . . 11 2.2.2 Phase Noise of RingOscillator . . . . . . . . . . . . . . . . . . . . . 14 3 A New Current Source Temperature Compensation Circuit for Ring VCO 18 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Current Source Effect with Temperature Variation . . . . . . . . . . 19 3.2 Design of Circuit Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Structure of Temperature Current Compensation . . . . . . . . . . 24 3.2.2 Structure of Voltage-Controlled Ring Oscillator . . . . . . . . . . . 27 3.2.3 Structure of Ring-VCOwith Temperature Compensation . . . . . . 30 3.3 Buffer Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Simulation andMeasurement Result . . . . . . . . . . . . . . . . . . . . . 39 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 A New-Type Double Feedback LC-Tank VCO 46 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Circuit Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.5 Simulation andMeasurement Result . . . . . . . . . . . . . . . . . . . . . 55 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 2.4GHz Injection-Locked Frequency Dividers with Ring VCO Topology 60 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 Preliminary of Injection-Locked Circuit Topology . . . . . . . . . . . . . . 61 5.2.1 General Injection-Locked Structure Circuit . . . . . . . . . . . . . . 61 5.2.2 Injection Phase Consideration . . . . . . . . . . . . . . . . . . . . . 61 5.2.3 Direct FrequencyDivider Topology . . . . . . . . . . . . . . . . . . 65 5.3 Design of Circuit Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.5 Simulation andMeasurement Result . . . . . . . . . . . . . . . . . . . . . 71 5.5.1 Simulation andMeasurement Result with Four-Divider Style . . . . 71 5.5.2 Simulation andMeasurement Result with Two-Divider Style . . . . 75 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6 Conclusions and Future Works 81

    [1] B. Razavi, Design of Analog CMOS Integrated Circuit, International Edition.
    McGraw-Hill Higher Education, Inc, 2001.
    [2] B. Razavi, RF Microelectronics. Pearson Education Taiwan Ltd, 2003.
    [3] M. Mansour and A. Mehrotra, “Analysis of MOS Cross-Coupled LC-Tank Oscillators Using Short-Channel Device Equations,” in Proceedings of the Asia and South Pacific on Design Automation Conference, pp. 181 — 185, 2004.
    [4] A. Hajimiri and T. Lee, The Design of Low Noise Oscillators. Kluwer Academic, 2000.
    [5] M. Bury and K. Martin, “A Wide-Tuning Range Transformer-Based RF CMOS
    Oscillator,” in Proceedings of the 28th European Conference on Solid-State Circuits, pp. 547 — 550, 2002.
    [6] A. Berny, A. Niknejad, and R. Meyer, “AWideband Low-Phase-Noise CMOS VCO,”
    in Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 555 —558, 2003.
    [7] B. Razavi, “A Study of Phase Noise in CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 31, pp. 331 — 343, March 1996.
    [8] A. Drc, K. Suyama, Y. Kimura, and T. Ichinose, “A Widlar-Bandgap Based
    Intermediate-Frequency Voltage-Controlled Oscillator for GSM/DCS Transceiver
    ICs,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium,
    pp. 635 — 638, 2003.
    [9] R. Dehqhani and S. Atarodi, “A New Low Voltage Precision CMOS Current Reference with No External Components,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, pp. 928 — 932, Dec. 2003.
    [10] S. Jing, K. Yeong, and W. Hsiung, “A Low Voltage CMOS Current Source with
    Temperature Compensation,” in Proceedings of the Southwest Symposium on Mixed-
    Signal Design, pp. 108 — 111, 2003.
    [11] A. Olmos, “A Temperature Compensated Fully Trimmable On-Chip IC Oscillator,” in Proceedings of the 16th Symposium on Integrated Circuits and Systems Design, pp. 181 — 186, 2003.
    [12] J. Lu, Y. Wang, N. Xu, and M. Gao, “Temperature Compensation in Bootstrapped Current Reference Source,” in Proceedings of the 2003 IEEE Conference on IEEE Electron Devices and Solid-State Circuits, pp. 491 — 494, 2003.
    [13] F. Fiori and P. Crovetti, “Compact Temperature-Compensated CMOS Current Reference,” IEE Electronics Letters, vol. 39, pp. 42 — 43, Jan. 2003.
    [14] J. Henri and A. Deniel, “CMOS Current Reference without Resisance,” IEEE J. Solid-State Circuits, vol. 32, pp. 1132 — 1135, July 1997.
    [15] C. Mauricio and G. Carlos, “A 2-nW 1.1-V Self-Biased Current Reference in CMOS Technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, pp. 61 — 65, Feb. 2005.
    [16] W. Yan and H. Luong, “A 900-MHz CMOS Low-Phase-Noise Voltage-Controlled
    Ring Oscillator,” Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, pp. 216 — 221, Feb. 2001.
    [17] Y. Eken and J. Uyemura, “A 5.9-GHz Voltage-Controlled Ring Oscillator in 0.18um CMOS,” IEEE J. Solid-State Circuits, vol. 39, pp. 230 — 233, Jan. 2004.
    [18] C. Lee and H. Park, “All-CMOS Temperature Independent Current Reference,” IEE Electronics Letters, vol. 32, pp. 1280 — 1281, July 1996.
    [19] N. Weste and K. Eshraghian, Principle of CMOS VLSI Design: A System Perspective, Second Edition. Addison Wesley, Inc, 1993.
    [20] M. Lan, A. Tammineedi, and R. Geiger, “Current Mirror Layout Strategies for Enhancing Matching Performance,” Analog Integrated Circuits and Signal Processing, vol. 28, pp. 9 — 26, July 2001.
    [21] M. Lan, A. Tammineedi, and R. Geiger, “A New CurrentMirror Layout Technique for improved Matching Characteristics,” in Proceedings of the 42nd Midwest Symposium on Circuits and Systems, vol. 2, pp. 1126 — 1129, 1999.
    [22] M. Mansour, A. Mehrotra, W. Walker, and A. Narayan, “Analysis Techniques for Obtaining The Steady-State Solution of MOS LC Oscillators,” in Proceedings of the 2004 International Symposium on Circuits and Systems, vol. 5, pp. 512 — 515, 2004.
    [23] Z. Lin and C. Huang, “A Current-Source Driven CMOS Voltage-Controlled Oscillator,” in Proceedings of the 6th IEEE International Conference on Circuits and Systems, vol. 3, pp. 1337 — 1339, 1999.
    [24] M. Soyuer, K. Jenkins, J. Burghartz, and M. Hulvey, “A 3-V 4-GHz nMOS Voltage-Controlled Oscillator with Integrated Resonator,” IEEE J. Solid-State Circuits, vol. 31, pp. 2042 — 2045, Dec. 1996.
    [25] D. Ham and A. Hajimiri, “Concepts and Methods in Optimization of Integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896 — 909, June 2001.
    [26] S. Zafar, A. Kumar, E. Gusev, and E. Cartier, “Threshold Voltage Instabilities in High K Gate Dielectric Stacks,” IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 45—64, March 2005.
    [27] J. Stork, “Technology Leverage for Ultra-Low Power Information Systems,” Hewlett Packard Laboratorie 1994 Technical Reports, 1994.
    [28] B. Razavi, “A Study of Injection Locking and Pulling in Oscillator,” IEEE J. Solid-State Circuits, vol. 39, pp. 1415 — 1424, Sept. 2004.
    [29] H. Rategh and T. Lee, “Superharmonic Injection-Locked Frequency Dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813 — 821, June 1999.
    [30] K. Dennis and R. John, “A Subharmonically Injected LC Delay Line Oscillator for 17-GHz Quadrature LO Generation,” IEEE J. Solid-State Circuits, vol. 39, pp. 1434— 1445, Sept. 2004.
    [31] S. Verma, H. Rategh, and T. Lee, “A Unified Model for Injection-Locked Frequency Dividers,” IEEE J. Solid-State Circuits, vol. 38, pp. 1015 — 1027, June 2003.
    [32] M. Tiebout, “A CMOS Direct Injection-Locked Oscillator Topology as High-
    Frequency Low-Power Frequency Divider,” IEEE J. Solid-State Circuits, vol. 39,
    pp. 1170 — 1174, July 2004.
    [33] H. Ahmed, C. Devries, and R. Mason, “A Digitally Tuned 1.1GHz Subharmonic
    Injection-Locked VCO in 0.18um CMOS,” in Proceedings of the 29th European Conference on Solid-State Circuits, pp. 81 — 84, 2003.
    [34] D. Ruffieux, E. Roux, T. Melly, and V. Peiris, “A Low Voltage, Low Power VCO for The 88-108MHz FM Broadcasting Band,” in Proceedings of the 29th European Conference on Solid-State Circuits, pp. 497 — 500, 2003.
    [35] J. Wong and H. Luong, “A 1.5-V 4-GHz Dynamic-Loading Regenerative Frequency Doubler in a 0.35um CMOS Process,” Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, pp. 450 — 455, August 2003.

    無法下載圖示 全文公開日期 2006/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2006/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE