簡易檢索 / 詳目顯示

研究生: 王志恩
Chih-En Wang
論文名稱: 高速資料擷取分析之光纖光柵讀取機;設計與研製
Design and Development of Fiber Bragg Grating Sensor Interrogator for High-Speed Data Capturing and Analyzing
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 李政寬
陳俊仲
徐世祥
廖顯奎
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 96
中文關鍵詞: 光纖光柵讀取機遠端光纖監測系統橋梁感測光纖沉陷計
外文關鍵詞: FBG interrogation system, remote fiber real-time monitoring system, bridge sensing, fiber optical settlement sensor
相關次數: 點閱:403下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文開發一套遠端光纖監測系統,包含了一台光纖光柵讀取機搭配遠端監測軟體,用以代替的現有的高成本光學量測儀器,以保障民生安全為目的,能夠針對大尺度或多座高架橋梁進行同步安全即時監測。
光纖光柵讀取機系統部分,本論文改良第一代光纖光柵讀取機中探測光源所搭載的可調式光學濾波器,其調變速度可達到毫秒等級,更能符合橋梁監測當中相當重要的即時監測特性。除此之外,本論文也同步縮小光纖光柵讀取機的體積,使其能夠更方便攜帶至現場進行量測,第二代的光纖光柵讀取機可掃描監測的波長範圍為1527 nm至1567 nm,包含整個C-band波段,掃描速度則提升至20 ms/點。
遠端監測軟體部分,其讀取機初始值設定功能、單根光纖光柵掃描功能、全橋梁自動監測功能及自動存取每筆監測資料功能在針對各項功能進行軟硬體整合測試後皆能夠確實動作,使用者能在遠端藉由遠端監測軟體,對光纖光柵讀取機進行控制並讀取監測結果數據加以分析。
本文最後使用遠端光纖監測系統針對實際應用於橋梁感測上的光纖光柵沉陷計進行量測,實際模擬即時監測的功能。我們以架設於不同距離處的三座光纖光柵沉陷計分別進行實驗,結果顯示沉陷計1、沉陷計2與沉陷計3對於水位變化的靈敏度分別為0.1543 nm/cm、0.1536 nm/cm與0.155 nm/cm,線性度R2分別為分別為0.9968、0.9995與0.9988;此外我們也利用手動改變高程的方式實際模擬單點以及多點發生高程變化時的情形,此套系統也能夠確實量測到高程發生變化的位置與數值。最後測試此監測系統對各沉陷計的反射波長及峰值功率的穩定度,結果顯示反射波長非常穩定無飄動現象,峰值功率僅有少筆數據顯示±0.1 dB跳動,此監測系統在三座不同距離的沉陷計所監測到訊號呈現一相當穩定的狀態。


This thesis presents a remote fiber monitoring system. A fiber Bragg grating (FBG) interrogation system with remote monitoring software is developed to replace the high-cost optical measuring instruments to ensure livelihood security and immediately monitor several bridges in large scale.
Based on the first generation of the FBG interrogation system proposed by our laboratory, we present herein the second generation interrogation system to replace the optical tunable filter. With a mini-second tuning speed, the real-time monitoring, which is the most important characteristics, is more suitable in bridge monitoring system. Moreover, we downsize the FBG interrogation to make our system portable. Regarding the second generation FBG interrogation system, the wavelength measurement can range from 1527 nm to 1567 nm (include the entire C band) and the speed of scanning reaches 20 mini-second/point.
While testing the remote monitoring software, including setting initial values, scanning single FBG, automatically monitoring bridges and data automatically saved, all the functions work perfectly. Thus, users can control and analyze the data by using the monitoring software.
Finally, we use the remote fiber monitoring system to measure the FBG settlement sensor that is applied to the bridge sensing to simulate the function of real-time monitoring. The experiment is set up at different distances with three settlement sensors. The results show that the sensitivity of the changing in water level of the settlement sensor 1, 2 and 3 are 0.1543 nm/cm, 0.1536 nm/cm and 0.155 nm/cm, respectively, with the linearity R2 is 0.9968, 0.9995 and 0.9988. In addition, the height we manually changed is used to simulate how the height changes on one single point or multi-points. Further, the stability of the reflected wavelength and the peak power of each settlement sensors are tested in this thesis. It is shown that the reflected wavelength is stable with slightly fluctuation caused by thermal drift. Here, we have reached a peak power of less than ±0.1 dB jitter. To sum up, the system receives a stable signal when monitoring the three settlement sensors with three different distances.

摘要..........................................................I Abstract.....................................................II 致謝.........................................................IV 目錄..........................................................V 圖表索引....................................................VII 第一章 緒論....................................................1 1.1 前言......................................................1 1.2 研究動機...................................................2 1.3 論文架構...................................................2 第二章 光纖光柵讀取機文獻探討與設計概念...........................4 2.1 文獻探討...................................................4 2.2 光纖光柵讀取機設計概念......................................8 2.3 光纖光柵讀取機特性比較......................................9 第三章 第一代光纖光柵讀取機實地量測與特性改良....................11 3.1 光纖光柵感測原理簡介與應用.................................11 3.1.1 光纖光柵感測理論分析....................................12 3.1.2 光纖光柵沉陷計..........................................15 3.2 第一代光纖光柵讀取機實地量測...............................17 3.3 第一代光纖光柵讀取機改良...................................24 3.3.1 Opotoplex's MEMS Tunable Filter簡介....................24 3.3.2 調變特性與應用方法......................................26 第四章 第二代遠端監測系統整合測試..............................28 4.1 遠端監測硬體.............................................28 4.1.1 光纖光柵讀取機系統建置..................................28 4.1.2 光纖光柵讀取機外觀與監測環境架設.........................29 4.2 遠端監測軟體.............................................31 4.2.1 光纖光柵讀取機內部程式設計流程...........................31 4.2.2 監測軟體基本介面說明....................................36 4.3 軟硬體整合測試...........................................38 4.3.1 讀取機參考值設定功能與單根光柵掃瞄功能測試................38 4.3.2 全自動監測功能..........................................44 4.3.3 自動存取每筆監測資料功能.................................48 第五章 第二代遠端監測系統於橋梁高程差之監測......................50 5.1 橋梁高程差感測系統建置.....................................50 5.1.1 光纖光柵感測機制........................................50 5.1.2 橋梁高程差感測系統建置...................................52 5.2 光纖光柵沉陷計靈敏度量測...................................54 5.2.1 第一座光纖光柵沉陷計.....................................56 5.2.2 第二座光纖光柵沉陷計.....................................58 5.2.3 第三座光纖光柵沉陷計.....................................60 5.3 橋梁高程差感測系統量測.....................................62 5.3.1 單點量測................................................63 5.3.2 多點量測................................................67 5.3.3 穩定度量測..............................................70 第六章 結論與後續發展..........................................73 6.1 結論......................................................73 6.2 後續發展..................................................74 參考文獻......................................................76

[1]安毓英、曾小東,“光纖感測與量測”,台北,五南圖書出版股份有限公司,初版,2004
[2]生活月刊-世說新語-光纖的發展與應用,2007第80期
[3]林來誠,“光纖光柵製作與應用”,光電科技工業協進會
[4]National Instruments-技術文件:感測器新方案:FBG (光纖光柵) 光感測器與原理詳解,2017
[5]蔡瑞禎,“光纖感測預警系統”,三聯科技股份有限公司產品新訊
[6]張國鎮、宋裕祺、林詠彬、林呈、賴進松、李路生、陳俊仲、翁士晟,“創新橋梁監測系統建置試驗研究”,國家地震工程研究中心,2013
[7]A. Csipkes, S. Ferguson, T. W. Graver, T. C. Haber, A. Méndez, and J. W. Miller, “The maturing of optical sensing technology for commercial applications, ” , 2005
[8]施旻汶,“自動化無人飛行載具輔助擷取橋梁影像之研究”,中央大學營建管理研究所碩士論文,2015
[9]臺灣地區橋梁管理資訊系統 http://tbms.iot.gov.tw/bms2_test/
[10]沈永年、林仁益,“橋梁安全監測”,新文京出版股份有限公司,2006
[11]周智、歐進萍,“光纖光柵傳感器及其在橋梁結構健康監測中的應用”,哈爾濱工業大學土木工程學院論文,2006
[12]吳信宏,“光纖光柵感測器應用於橋梁結構監測之研究”,臺灣大學土木工程學研究所碩士論文,2004
[13]B. C. Lee, E. J. Jung, C. S. Kim and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 μm Fourier domain mode-locked wavelength-swept laser,” Measurement Science and Technology, vol. 21, no. 9, pp. 094008, 2010
[14]D. Donisi, R. Beccherellib and A. d’Alessandroa, “Lightwave Technologies for Interrogation Systems of Fiber Bragg Gratings Sensors,” An Introduction to Optoelectronic Sensors, vol. 7, pp. 95, 2009
[15]M. D. Todd, G. A. Johnson and B. L. Althouse, “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach-Zehnder interferometer and a 3× 3 coupler,” Measurement science and technology, vol 12, no. 7, pp. 771-777, 2001
[16]A. Ezbiri, A. Munoz, S. E. Kanellopoulos and V. A. Handerek, “High resolution fibre Bragg grating sensor demodulation using a diffraction grating spectrometer and CCD detection,” Optical Techniques for Smart Structures and Structural Mmonitoring (Digest No. 1997/033), IEE Colloquium on. IET, 1997
[17]Y. S. Kwon, M. O. Ko, M. S. Jung, I. G. Park, N. Kim, S. P. Han, H. C. Ryu, K. H. Park and M. Y. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors, vol. 13, no. 8, pp. 9669-9678, 2013
[18]R. Caputo, L. De Sio, A. Veltri and C. Umeton, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,”Optics letters, vol. 29, no. 11, pp. 1261-1263, 2004
[19]鄭朝陽,“用於遠端光纖即時監控的光纖光柵讀取機:設計與實現”,國立台灣科技大學電子所碩士論文,2017
[20]K.O. Hill and M. Gerald,“Fiber Bragg grating technology fundamentals and overview,”IEEE/OSA Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997
[21]A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam and E. J. Frieble,“Fiber grating sensor,”Journal of Lightwave Technology, vol. 15, no. 8, pp. 1442-1463, 1997.
[22]彭朋群、賴暎杰,“光電的應用:智慧型光纖光柵感測系統”,2005
[23]A. Othonos, K. Kalli,“Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing,”Artech House Optoelectronics Library, 1999
[24]A. Yariv,“Coupled-mode theory for guided-wave optics,”IEEE Journal of Quantum Electronics, vol. 9, no. 9, pp. 919-933, 1973
[25]畢衛紅、張闖,“光纖Bragg光柵的反射特性研究”,傳感器技術,第22期,第8卷,2003
[26]R. Kashyap, “Fiber Bragg gratings,” Academic Press, 1999
[27]李政寬,“橋梁自動化量測作業─全橋安全監測”,科學發展498期,2014
[28]國工局一區處中壢工務所,“國道1號五股至楊梅段拓寬工程計畫”,2014
[29]Optoplex MEMS Tunable Filter http://www.optoplex.com/MEMS_tunable_Filter.htm
[30]洪士軒,“用於液體多參數分析之新穎光纖感測架構設計”,台灣科技大學電子工程研究所碩士論文,2014
[31]王俊容,“光纖光柵與光循環器組成之光纖雷射: 研製與應用”,台灣科技大學電子工程研究所碩士論文,2004
[32]陳柏偉,“液體多參數感測之元組件開發與系統量測”,台灣科技大學電子工程研究所碩士論文,2016
[33]李政寬,“光柵感測技術在橋梁安全監測與管理上的初步應用”,2016
[34]廖顯奎,“當代光電工程”,初版,台北,高立圖書,2012
[35]廖協虹,“C+L-Band 摻鉺光纖放大器的研製與應用”,台灣科技大學電子工程研究所碩士論文,2004
[36]賴郁竹,“多參數光纖光柵液體感測研製” 台灣科技大學電子工程研究所碩士論文,2015
[37]林其穎、陳俊仲、張國鎮,“橋梁沖刷監測預警系統建置之試驗研究”
[38]Y. E. Marin, Tiziano Nannipieri, Claudio J. Oton, and Fabrizio Di Pasquale, “Integrated FBG Sensors Interrogation Using Active Phase Demodulation on a Silicon Photonic Platform,”Journal of Lightwave Technology, 2017
[39]G. W. Yoffe, P. A. Krug, F. Ouellette and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Applied Optics, vol. 34, no. 30 pp. 6859-6861, 1995.
[40]T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura and Y. Hattori, “Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes,” Electronics Letters, vol. 33, no. 5, pp. 417-419, 1997.
[41]M. G. Xu, J. L. Archambault, L. Reekie and J. P. Dakin, “Thermally-compensated bending gauge using surface mounted fiber gratings,” International Journal of Optoelectronics, vol. 9, no. 3, pp. 281-283, 1994.
[42]G. W. Yoffe, P. A. Kurg, F. Ouellette and D. A. Thorncraft, “Temperature compensated optical fiber Bragg gratings,” Optical Fiber Communication Conference, vol. 8, pp. 134-135, 1995.
[43]W. Huang, C. Huang, X. Wang, B. Zheng, H. Xu and Z. Cai1,“A C+L-band erbium-doped fiber ASE source using dual-forward pumping configuration,”2009
[44]H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R, Kashyap,“An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating,” Journal of Lightwave Technology, 2016
[45]R. Yang, H. Bao, S. Zhang, K. Ni, Y. Zheng, and X. Dong,“Simultaneous Measurement of Tilt Angle and Temperature With Pendulum-Based Fiber Bragg Grating Sensor,”IEEE Sensors Journal, 2015
[46]M. A. Gonzalez-Reyna, E. Alvarado-Mendez, J. M. Estudillo-Ayala, E. Vargas-Rodriguez, M. E. Sosa-Morales, J. M. Sierra-Hernandez, D. Jauregui-Vazquez, and R. Rojas-Laguna,“Laser Temperature Sensor Based on a Fiber Bragg Grating,”IEEE Photonics Technology Letters, 2015

QR CODE