簡易檢索 / 詳目顯示

研究生: 陳柏戎
Po-Jung Chen
論文名稱: 低成本光纖感測系統:設計與應用
Low-cost optical fiber sensing system: design and application
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 王倫
Lon A. Wang
單秋成
Chow-Shing Shin
周錫熙
Hsi-Hsir Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 光纖感測功率感測系統分佈式光纖感測系統撓曲度感測
外文關鍵詞: fiber optic sensor, power sensing system, distributed sensing system, deflected sensing
相關次數: 點閱:334下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨針對降低橋樑光纖感測系統建置成本進行可行性評估及測試,並提出三種不同光路架構進行討論。實驗首先提出一寬平坦光源與可調式光纖光柵當作濾波器的功率感測系統,觀測端利用Labview自行開發出一訊號擷取程式,並進行單點的橋樑撓曲度感測。在寬頻光源架構底下,波長完全吻合的情況下可得到最大功率-29.66 dBm,光纖光柵受力後會逐漸遞減至最低功率-41.26 dBm,相關係數R^2為0.93,解析度在曲率<12 m-1時為12.29 με,而曲率介於12 m-1到27 m-1時解析度則為37.56 με。而後,在第四章中我們又針對中長距離橋樑導入環形雷射架構,使整體功率上升,當濾波器與光纖光柵波長吻合的情形下最大功率達-9.01 dBm,開始受力後逐漸遞減至最小功率-21.5 dBm,相關係數R^2為0.9412,解析度在曲率< 12 m-1約為12.53 με,而曲率介於12 m-1到27 m-1時解析度約為28.55 με。最後,我們提出了一分佈式光纖感測網路,在系統中加入陣列波導光柵(AWG),增加主系統的擴充性預期可減少系統佈建數量,進而降低成本。首先取用陣列波導光柵的兩個分別位在1539.76 nm及1540.56 nm的通道。當系統使用摻鉺光纖放大器做光源時,模擬結果在1540.5 nm處有單一波長產生,實驗波長同樣位在約1540.65 nm的位置,此原因為摻鉺光纖放大器的均勻展寬特性。當光源換成半導體放大器時,由模擬結果顯示兩個分別位在1539.8 nm與1540.6 nm位置的波峰產生;實作中,同樣出現兩個位在1539.89 nm與1540.71 nm位置的波峰,此為半導體放大器的非均勻展寬特性所造成的結果。除此之外,頻譜中多波長效應起因於端面間的不規律反射,而功率的不均等現象則與四波混頻效應及元件插入損耗的不同有關。


The purpose of this thesis is to evaluate and test the feasibility of reducing the construction cost of optical fiber sensing system for bridge, and propose three different optical structures. In this thesis, a broadband light source and tunable fiber grating are proposed as a filter for power sensing system. The observation end utilizes Labview to develop a power acquisition program and perform single-point bridge deflection. Under broadband light source structure, in the case of a complete match of the wavelength can obtain a maximum power of -29.66 dBm, followed by a decline to the lowest power at -41.26 dBm while force onto the FBG. The correlation coefficient R^2 is 0.93. Resolution equals 12.29 με while curvature below 12 m-1 and 37.56 με when curvature is between 12 m-1 to 27 m-1. For the long-distance bridge, we proposed the ring laser structure into the system, so that the overall power rise in the case of maximum power of -9.01 dBm, and followed by decline to the lowest power at -22.4 dBm while force onto the FBG. The correlation coefficient R^2 is 0.9412. Resolution equals 12.53 με while curvature below 12 m-1 and 28.55 με when curvature is between 12 m-1 to 27 m-1. To increase extensibility of fiber sensing network, , we designed a distributed fiber optical sensing network and apply a arrayed waveguide grating (AWG) into the system. At the first, we take two AWG channels, which located at 1539.76 nm and 1540.56 nm. When we applied Erbium-doped Optical Fiber Amplifier (EDFA) light source, there is a single peak at 1540.5 nm, the experimental wavelength is also shown at 1540.65 nm. The reason is due to homogeneous broaden characteristics of EDFA. While we applied semiconductor optical amplifier (SOA), the simulation results show that the two peaks appear at 1539.8 nm and 1540.6 nm simultaneously. The experiment also shows two peaks anchored at 1539.89 nm and 1540.71 nm. This is because the inhomogeneous broaden characteristics of a SOA. In addition, the multi-wavelength effect in the spectrum is due to the irregular reflection between the end faces, and the power inequality is due to the effect of four-wave mixing and the difference of the component insertion loss.

誌謝 I 摘要 II Abstract III 目錄 V 圖表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 3 1.4 論文架構 6 第二章 光柵元件、光源與非線性光學理論分析 7 2.1 布拉格光纖光柵原理 7 2.1.1 布拉格光纖光柵與曲率理論的關係 9 2.2 感測用光纖光柵製作 12 2.2.1 布拉格光纖光柵製作 14 2.3 感測用光源介紹 16 2.3.1 摻鉺光纖放大器原理介紹 16 2.3.2 半導體光放大器之工作原理 19 2.3.3 光纖雷射原理介紹 20 2.4 光纖傳輸中的非線性效應 22 2.4.1 受激布里淵散射 23 2.4.2 受激拉曼散射 24 2.4.3 交叉相位調製 24 2.4.4 四波混頻效應 25 第三章 可調式光柵濾波器暨寬頻光功率感測系統 26 3.1 可調式光纖光柵濾波器與曲率分析 26 3.1.1 可調式布拉格光纖光柵濾波器製作與曲率的量測方法 26 3.1.2 曲率與波長關係 28 3.2 Labview功率資料擷取系統 30 3.2.1 資料擷取系統之Labview程式碼概略 30 3.2.2 人機介面實作 31 3.2.3 擷取資料數據排序 32 3.3 可調式光柵濾波器暨之寬頻光功率感測系統介紹 33 3.3.1 實驗流程與測量方法 33 3.3.2 感測系統架構介紹 34 3.3.3 撓曲度感測實驗 37 3.3.4 撓曲度感測實驗結果分析 39 3.4 本章小結 44 第四章 檢測光訊號之環形雷射功率感測系統 45 4.1 實驗使用之光濾波器介紹 45 4.1.1 手調式光濾波器簡介 45 4.1.2 電子可調式光濾波器規格與介紹 46 4.2 手調式光濾波器暨環形雷射功率檢測系統 48 4.2.1 手調式濾波器之環形光纖雷射感測系統光路介紹 48 4.2.2 環形雷射系統與功率變化感測之實驗結果 49 4.3 電子可調式光濾波器暨環形雷射功率檢測系統 51 4.3.1 電子式濾波器之環形光纖雷射感測系統簡介 51 4.3.2 撓曲度感測實驗 52 4.3.3 撓曲感測實驗結果分析 54 4.5 環形光纖雷射感測系統模組化雛形 58 4.6 本章小結 60 第五章 分佈式光纖感測系統之非線性研究 61 5.1 分佈式感測系統實驗設備比較與介紹 61 5.1.1 兩種光源的綜合性比較分析 61 5.1.2 高解析度光頻譜分析儀 62 5.2 分佈式感測系統實驗架構解析 63 5.2.1 雙通道感測系統之光路介紹 63 5.2.2 Opti-system光路模擬結果討論 65 5.3 實驗結果與討論 68 5.3.1 EDFA實驗結果討論 68 5.3.2 SOA實驗結果討論 69 5.4 使用1x2分光器之EDFA分佈式感測架構討論 74 5.5 本章小結 76 第六章 結論與未來展望 77 6.1 結論 77 6.2 未來展望 79 參考文獻 81

[1] 廖顯奎,徐桂珠,許光裕,“當代光纖通訊”,高立圖書公司,2012 年6月。
[2] 彭利標,” 光纖的非線性光學效應及其對光纖通信的影響”,中文信息,
2014年。
[3] 中央氣象局 http://www.cwb.gov.tw/V7/knowledge.
[4] National Instrument http://www.ni.com/white-paper/11821/zht.
[5] W. H. Chung, S. Y. Liu, B. O. Guan, T. L. Chan, T. H. T. Chan and H. Y. Tam, “Structural. Monitoring of Tsing Ma Bridge using Fiber Bragg Grating Sensors,” IEEE Proceedings of the Sixth Chinese Optoelectronics Symposium, 2003.
[6] Y. Gong, T. Zhao, Y. J. Rao and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photonics Technology Letters, vol. 23, no.11, pp. 679-681, June, 2011.
[7] L. Li, M. Li, W. Shi, H. Lu, X. Wen, X. Chang and Y. Zeng, “A New Fiber Bragg Grating Interrogation and Multiplexing Schema Using an F-P Laser Light Source,” IEEE Photonics Technology Letter, vol. 29, pp.2, 2017.
[8] 董德國,陳萬清譯,“光纖通訊”,台灣東華書局股份有限公司,台北,2000。
[9] 賴郁竹,”多參數光纖光柵亦體感測研製”,台灣科技大學電子工程研究所碩士論文,2015年7月。
[10] Z. Bai, W. Zhang, S. Gao, H. Zhang, L. Wang, Y. Liu, and T. Yan, “Simultaneous measurement of strain and temperature using a long period fiber grating based on waist-enlarged fusion bitapers,” Journal of Optics, vol. 16, no. 4, 2014.
[11] 畢衛紅,張闖,”光纖Bragg光柵的反射特性研究”,中國科技論文在線,第22期,第8卷,2003。
[12] K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
[13] 陳宣臣,“波長可調光纖光柵之研製與應用”,台灣科技大學電子工程研究所碩士論文,2004年6月。
[14] R. Kashyap, “Fiber Bragg gratings,” San Diego, USA: Academic Press, 1999.
[15] Wikipedia https://en.wikipedia.org/wiki/Curvature.
[16] 陳嘉胤,“樑內應力試驗”,正修科技大學土木空間與資訊系,2014年6月。
[17] Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEE Photonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
[18] C. K. Soh, Y. Yang, and S. Bhalla, “Smart Materials in Structural Health monitoring control and biomechanics,” Springer and Zhejiang University Press, pp.414-420, 2012.
[19] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method,” Optics Letters, vol.14, no.15, pp.823-825, 1989.
[20] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol.62, no.10, pp. 1035-1037, 1993.
[21] 張銘宏,“兼具增益之可重構光信號塞取多工器”,台灣科技大學電子工程研究所碩士論文,2005年6月。
[22] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, pp. 991-1007, 1997.
[23] L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Optics Letters, vol. 37, no. 7, pp. 1148-1150, 2012.
[24] 廖協虹,“C+L-Band 摻鉺光纖放大器的研製與應用”,台灣科技大學電子工程研究所碩士論文,2004年6月。
[25] D. K. Mynbaev and L. L. Scheiner, “Fibre Optic Communications Technology,” Prentice-Hall, 2000.
[26] A. Bilenca and G. Eisenstein, “Statistical noise properties of an optical pulse propagating in a nonlinear semiconductor optical amplifier,” IEEE Journal of Quantum Electronics, vol. 41, no. 1, pp. 36-38, 2005.
[27] G. P. Agrawal, N. K. Dutta, “Long-wavelength semiconductor lasers,” New York: Van Nostrand Reinhold, 1986.
[28] D. K. Mynbaev and L. L. Scheiner, “Fibre Optic Communications Technology,” Prentice-Hall, 2000.
[29] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
[30] 游易霖,”長波長環形摻鉺光纖雷射特性分析與優化”,台灣科技大學電子工程研究所碩士論文,2009年6月。
[31] H. J. Dutton, “Understanding optical communication,” Prentice Hall, 1999.
[32] 陳至揚,”迴路型光纖雷射技術之研究”,國立交通大學光電研究所碩士論文, 2003年7月。
[33] 賴映杰,” 光纖中的非線性量子光學校應”,物理雙月刊,第26卷,1998。
[34] 台灣Wiki http://www.twwiki.com/wiki/非線性效應.
[35] 蕭文皓,”交通安全感測網路之光開關設計及參數量測”,台灣科技大學電子工程研究所碩士論文,2015年7月。
[36] 盧彥宏,“無溫控光纖光源之設計與改良”,台灣科技大學電子工程研究所碩士論文,2013年7月。
[37] 交通部公路總局 https://www.thb.gov.tw/
[38] Comparison Of Different Optical Amplifiers https://goo.gl/4kqvu6
[39] S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol.13, no.4, pp.350-351, 2001.
[40] S. Diaz, D. Leandro, and M. Lopez-Amo, “Stable multiwavelength erbium fiber ring laser with optical feedback for remote sensing,” IEEE/OSA J. Lightwave Technol., vol.33, no.12, pp.2439-2444, 2015.
[41] S. K. Liaw, Y.W. Lee, H.W. Huang, W.F. Wu, “Multi-wavelength linear-cavity SOA-based laser array design for multi-parameter and long-haul sensing,” IEEE Sensor Journal, vol. 15, pp353-358, 2016.
[42] M. Okada, K. Takahashi, H. Kishikawa, N. Goto, Y.-L. Yu, and S.-K. Liaw, “Multi-wavelength lasing with SOA and AWG for linear-cavity fiber sensor,'' 18th European Conference on Integrated Optics 2016 (ECIO2016), Warsaw, O-04, 2016.
[43] K. Takahashi, M. Okada, H. Kishikawa, N. Goto, Y.-L. Yu, and S.-K. Liaw, “Multi-channel lasing characteristics for linear-cavity fiber sensor system using SOA and fiber Bragg grating elements,'' 21st Optoelectronics and Communications Conference / International Conference on Photonics in Switching 2016 (OECC/PS 2016), Niigata, 2016.
[44] A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency Erbium-doped fiber lasers anchored on the ITU frequency grid,” IEEE/OSA IEEE J. Lightwave Technol., vol.18, no.6, pp.825-831, 2000.
[45] K. Thyagarajan and A. Ghatak, “Fiber Optic Essentials”, John Wiley & Sons, 2007.
[46] G. P. Agrawal and I. M. Habbab, “Effect of four-wave mixing on multichannel amplification in semiconductor laser amplifier,” IEEE J.Quant. Electron., vol.26, no.3, pp501-505, 1990.

QR CODE