簡易檢索 / 詳目顯示

研究生: 蔡宗儒
Tzung-Ru Tsai
論文名稱: 在脈衝雜訊通道下之有效的渦輪解碼
An Efficient Turbo decoding over Impulse Noise Channels
指導教授: 韓永祥
Yunghsiang S. Han
曾德峰
Der-Feng Tseng
口試委員: 陳伯寧
Po-Ning Chen
白宏達
Hung-Ta Pai
張立中
Li-Chung Chang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 116
中文關鍵詞: 脈衝雜訊渦輪碼裁切抹除核密度估測外來資訊轉換區間曲線
外文關鍵詞: impulse noise, turbo code, clipping, erasing, kernel density estimation, EXIT chart
相關次數: 點閱:381下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在通訊領域中,脈衝雜訊(Impulse noise)一直是個嚴重的危害。瞬間的
強力干擾不僅破壞了傳送的訊號,還會使系統在資料的解讀上產生大
量的錯誤。為了解決這個問題,從以前到現在的研究莫不把心力投注
於編碼系統與訊號處理的發展上,甚至進一步結合兩者的長處以求互
補。但面對難以捉摸的脈衝雜訊,還是有不足之處需要改進。
面對這個問題,本論文首先以普遍應用於各標準中的渦輪碼(Turbo
Code)為對象,針對脈衝雜訊對於解碼器的干擾作出分析。接著參考
量度抹除維特比演算法(metric-erasure Viterbi algorithm),發展出基於
量度上剪裁(clipping),且只需部分雜訊參數的改進式渦輪碼來處理脈
衝雜訊。並考慮到渦輪碼驗證上的繁複,提出使用核密度估測(kernel
density estimation) 的外來資訊轉換區間曲線(extrinsic information
transfer band chart)來評估解碼器的效能,避免模擬上的時間浪費。
經由電腦的數值模擬與評估結果得知,我們所提出的量度剪裁渦輪碼
性能非常優秀。可以得到接近於直接針對雜訊模型最佳化的渦輪碼效
能,又能節省許多額外的運算,特別是只需要部分的參數就能有效運
作,在彈性上與泛用性得到很大的進步。


Impulse noise is a serious problem in communications. This intense noise
hinders transmitted signal and raises the error of exchanged data. Some previous
works on channel coding adopt traditional codes and signal processing to solve this
issue, but encountered many difficulties in handling the impulse.
Regarding impulse noise, first we analyzed the impact of impulse noise to turbo
code, which is a robust and popular code in white Gaussian channel. Referring to
metric-erasure Viterbi algorithm, we developed a metric clipping turbo code based on
partial information of impulse model. To evaluate this code in non-Gaussian channel
exactly, we introduced kernel density estimation into extrinsic information transfer
band chart for operating evaluation.
The result of computer simulation and evaluation shows the performance is close
to model-modified turbo code and the complexity is almost the same as primary turbo
code.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Impulse noise channel . . . . . . . . . . . . . . . . . . . . . 3 Bernoulli-Gaussian model . . . . . . . . . . . . . . . . . . . 4 Middleton class A model . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Turbo Decoder and EXIT chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Turbo decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 A-posterior probability . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Metrics decomposition of the APP in MAP decoder . . . . . 14 2.1.3 The γ metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.4 The α metric and forward recursion . . . . . . . . . . . . . 17 2.1.5 The β metric and backward recursion . . . . . . . . . . . . 18 2.1.6 The and E metrics . . . . . . . . . . . . . . . . . . . . . . 19 2.2 EXIT chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Mutual information . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 Histogram method for PDF estimation . . . . . . . . . . . . 23 2.2.3 EXIT band chart . . . . . . . . . . . . . . . . . . . . . . . . 27 3 MAP Decoder in Impulse Noise Channel and Strategies . . . . . . . . 29 3.1 Interference of impulse . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Effects of impulse to metrics in MAP decoder . . . . . . . . . . . . 30 3.3 Complete impulse information MAP decoder . . . . . . . . . . . . 32 3.4 Metric erasure Viterbi algorithm . . . . . . . . . . . . . . . . . . . 35 4 Metric Clipping MAP Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1 Erasure mechanism in MAP decoder . . . . . . . . . . . . . . . . . 38 4.2 Metric clipping MAP decoder . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 Clipping threshold . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2 Clipping on metrics . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3 New threshold with more impulse information . . . . . . . 48 4.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1 Simulation results over AWAN channel . . . . . . . . . . . 53 4.3.2 Simulation results over B-G channel . . . . . . . . . . . . . 59 4.3.3 Simulation results with small interleaver size . . . . . . . 64 4.3.4 Simulation results with stochastic impulse power . . . . . 67 5 EXIT Chart with KDE Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1 Kernel density estimation . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 The optimization of KDE . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Numerical simulations over the Rayleigh channel with small interleaver size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.4.1 EXIT analysis over AWGN channel . . . . . . . . . . . . . . 84 5.4.2 EXIT analysis over B-G channel . . . . . . . . . . . . . . . 90 5.4.3 EXIT analysis with stochastic impulse power . . . . . . . . 94 6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

[1] Johnson, J. B., “Thermal Agitation of Electricity in Conductors,” Phys. Rev., vol.
32, pp. 97-109, July. 1928.
[2] Nyguist, H., “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev., vol.
32, pp. 110-113, July. 1928.
[3] Papoulis, A., Probability, random Variables, and Stochastic Processes, McGraw-
Hill, New York, 1965.
[4] J. Hagenauer, “The Turbo principle: Tutorial introduction and state of the art,
in Proc. International Symposium on Turbo Codes and Related Topics, pp. 1V11,
Brest, France, Sept. 1997.
[5] T. A. Summers and S. G. Wilson, “SNR Mismatch and Online Estimation in Turbo
Decoding, IEEE Trans. Commun., pp. 421V423, April 1998.
[6] X. Huang and N. Phamdo, “Turbo Decoders Which Adapt to Noise Distribution
Mismatch, IEEE Commun. Letters, vol. 2, no. 12, pp. 321V323, Dec. 1998.
[7] HomePlug Power Line Alliance, http://www.homeplug.org.
[8] IEEE 1901, “IEEE Standard for Broadband over Power Line Networks: Medium
Access Control and Physical Layer Specifications,” Dec. 2010.
[9] D. Middleton, “Statistical-Physical Model of Electromagnetic Interference,” IEEE
Trans. on Electromagn. Compat., vol. 19, no. 3, pp. 106-126, Aug. 1977.
[10] D. Middleton, “Procedures for Determining the Parameters of the First-Order
Canonical Models of Class A and Class B ectromagnetic Interference [10],” IEEE
Trans. on Electromagn. Compat., vol. 21, no. 3, pp. 190-208, Aug. 1979.
[11] M. Zimmermann and K. Dostert, “Analysis and Modeling of Impulsive Noise in
Broad-Band Powerline Communications,” IEEE Trans. on Electromagn. Compat.,
vol. 44, no. 1, pp. 249-258, Feb. 2002.
[12] V. Milosevic and B. Ristic, “Effect of Impulse Noise Rejection with Median Filter
on Binary Digital Receiver Performance,” Electron. Lett., pp. 392-394, Mar. 1989.
[13] T. C. Chuah, “On Reed-Solomon Coding for Data Communications Over Power-
Line Channels,” IEEE Trans. Power Delivery, pp. 614-620, April 2009.
[14] Ha H. Nguyen and T. Q. Bui, “Bit-Interleaved Coded Modulation With Iterative
Decoding in Impulsive Noise,” IEEE Trans. Power Delivery, pp. 151-160, Jan.
2007.
[15] J. W. Modestino and D. H. Sargrad and R. E. Bollen, “Use of Coding to Combat
Impulse Noise on Digital Subscriber Loops,” IEEE Trans. Commun., pp. 529-537,
May 1988.
[16] L. Zhang and A. Yongacoglu, “Turbo Decoding with Erasures for High-Speed
Transmission in the Presence of Impulse Noise,” International Zurich Seminar on
Broadband Communications. Access, Transmission, Networking, pp. 201-206, Feb.
2002.
[17] M. Ardakani and F. R. Kschischang andW. Yu, “Low-Density Parity-Check Coding
for Impulse Noise Correction on Power-Line Channels,” in Proc. ISPLC 2005, pp.
90-94, May 2005.
[18] D. Umehara and H. Yamaguchi and Y. Morihiro, “Turbo Decoding in Impulsive
Noise Environment,” Proc. IEEE Global Telecommun. Conf., pp. 194-198, 29 Nov.-
3 Dec. 2004.
[19] D. Fertonani and G. Colavolpe, “A Simplified Metric for Soft-Output Detection in
the Presence of Impulse Noise,” Proc. IEEE Int. Symp. Power Line Commun. and
its Applic. (ISPLC’07), pp. 121-126, Mar. 2007.
[20] J. Mitra and L. Lampe, “Convolutionally Coded Transmission over Markov-
Gaussian Channels: Analysis and Decoding Metrics,” IEEE Trans. Commun., pp.
1939-1949, July 2010.
[21] C. Berrou and A. Glavieux and P. Thitimajshima, “Near Shannon limit error correcting
coding and decoding: turbo codes (1),” IEEE Int. Conf. on Commun., pp.
1064-1070, May 1993.
[22] T. Li and W. H. Mow and M. Siu, “Joint Erasure Marking and Viterbi Decoding
Algorithm for Unknown Impulsive Noise Channels,” IEEE Trans. on Wireless
Commun., vol. 7, no. 9, pp. 3407-3416, Sept. 2008.
[23] D.-F. Tseng and Y. S. Han and W. H. Mow and J. Deng, “Efficient Decoding over
Power-line Channels,” Proc. The Fifth Int’l Workshop on Signal Design and its Applications
in Communications (IWSDA’11), pp. 138-141, Oct. 2010.
[24] S. ten Brink, “Convergence Behavior of Iteratively Decoded Parallel Concatenated
Codes,” IEEE Trans. Commun., pp. 1727-1737, Oct. 2001.
[25] T. R. Tsai and D. F. Tseng and Y. S. Han and H. T. Pai, “Improved EXIT Analysis
for Turbo Decoding,” IEEE Commun. Letters, vol. 15, no.9, pp. 995-997, Sept. 2011.
[26] M. Ghosh, “Analysis of the Effect of Impulse Noise on Multicamer and Single Carrier
QAM Systems,” IEEE Trans. Commun., pp. 145-147, Feb. 1996.
[27] J.W. Lee and R. E. Blahut, “Convergence Analysis and BER Performance of Finite-
Length Turbo Codes,” IEEE Trans. Commun., pp. 1033-1043, May 2007.
[28] D. Scott, “On optimal and data-based histograms,” Biometrika, pp. 605-610, Dec.
1979.
[29] B. Silverman, Density Estimation for Statistics and Data Analysis, London:
Chapman and Hall, 1986.
[30] G. Terrell, “The Maximal Smoothing Principle in Density Estimation,” J. Am. Statistical
Assoc., pp. 470-477, 1990.
[31] 3GPP TS 25.212, “Technical Specification Group-Radio Access Network, Multiplexing
and Channel Coding”.
[32] IEEE 1901, “IEEE standard for broadband over power line networks: Medium
Access Control and Physical Layer Specifications,” Dec. 2010.
[33] H. Meng and Y. L. Uan and S. Chen, “Modeling and Analysis of Noise Effects on
Broadband Power-Line Communications,” IEEE Trans. on Power Del., vol. 20, no.
2, pp. 630-637, Apr. 2005.
[34] G. Ndo and P. Siohan and M.-H. Hamon and J. Horard, “Optimization of Turbo
Decoding Performance in the Presence of Impulsive Noise Using Soft Limitation at
the Receiver Side,” in Proc. IEEE Global Telecom. Conf., pp. 1-5, 30 Nov.- 4 Dec.
2008.
[35] H. C. Ferreira and L. Lampe and J. Newbury and T. G. Swart, Power Line Communications:
Theory and Applications for Narrowband and Broadband Communications
over Power Lines, John Wiley and Sons, 2010.
[36] S. Miyamoto, M. Katayama and N. Morinaga, “Performance analysis of QAM systems
under class A impulse noise environment,” IEEE J EMC, pp. 260-267, May
1995.
[37] A. D. Spaulding and D. Middleton, “Optimum reception in the impulsive interference
environment-part I: coherent detection,” IEEE J COM, pp. 910-923, Sept.
1977.
[38] J. Haring and A. J. Han Vinck, “Performance bounds for optimum and suboptimum
reception under Class-A impulsive noise,” IEEE Trans. Commun., pp. 1130-
1136, July 2002.
[39] J. Haring and A. J. Han Vinck, “Coding for impulsive noise channels,” in Proc.
ISPLC 2001, pp. 103-108, April 2001.
[40] R. Pighi and M. Franceschini and G. Ferrari and R. Raheli, “Fundamental Performance
Limits of Communications Systems Impaired by Impulse Noise,” IEEE
Trans. Commun., pp. 171-182, Jan, 2009.
[41] S. ten Brink, “Convergence of iterative decoding,” Electron. Lett., pp. 806-808,
1999.
[42] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,”
Ann. Math. Stat., pp. 823-837, 1956.
[43] E. Parzen, “On the estimation of a probability density function and the mode,”
Ann. Math. Stat., pp. 1065-1076, 1962.

無法下載圖示 全文公開日期 2019/01/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE