簡易檢索 / 詳目顯示

研究生: 張耕嘉
Keng-chia Chang
論文名稱: IEEE 1901電力線系統結合功率放大器在脈衝雜訊通道下之效能分析
The performance of IEEE 1901 powerline system and power amplifier under the impulse noise channel
指導教授: 曾德峰
Der-feng Tseng
口試委員: 張立中
Li-chung Chang
曾恕銘
Shu-ming Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 77
中文關鍵詞: 峰均值功率比電力線通訊脈衝雜訊裁剪限幅器功率放大器
外文關鍵詞: PAPR, powerline communication, Impulse noise, clipping, limiter, power amplifier
相關次數: 點閱:749下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在正交分頻多工(Orthogonal frequency-division multiplexing,OFDM)系統中,高峰均值功率比(Peak-to-Average Power Ratio,PAPR)是現實中廣泛討論的議題,因為高峰均值功率比會使類比/數位轉化器(ADC)的轉換效率下降,以及提高非線性功率放大器的成本。在許多文獻中都有提到降低峰均值功率比的方法,在這些方法中,裁剪(Clipping)是最直觀也是複雜度最低的有效方法。
    在一些智慧型建設中會使用電力線通訊(Powerline Communication,PLC)達到節能的目的,而電力線通訊傳輸以正交分頻多工調變為基本架構。訊號利用電力線傳輸也會碰到一些問題,例如因開關轉換引起的脈衝雜訊(Impulse noise),會成為電力線傳輸中影響訊號品質的關鍵。為了達到降低脈衝雜訊的影響及低複雜的目的,我們在接收器之前端利用限幅器(Limiter)降低干擾,使用限幅器時不考慮脈衝雜訊功率之相關資訊,此外在系統中利用通道編碼搭配限幅器對抗脈衝雜訊。在考慮前段所提的傳送端進行裁剪及功率放大器的情況下,並配合一些環境參數的變更,如:裁剪比(Clipping ratio,CR)及輸入回饋(Input back-off,IBO),找到合適參數區間以達到所需效果。


    High Peak-to-Average Power Ratio (PAPR) has been widely known as a practical issue when implementing Orthogonal Frequency Division Multiplexing (OFDM) based communication systems. Indeed, high PAPR takes a heavy toll on the efficiency of Analog-to-Digital Converter (ADC) as well as the cost of nonlinear power amplifier. There are quite a number of approaches to reducing the PAPR in the existing literature. Among them, the clipper, though conceptually straightforward, is also praised for its simplicity in terms of implementation.
    OFDM-based Powerline Communication (PLC) systems are poised to play a key role on energy saving as the deployment with regard to infrastructure is primarily ready for use. Nevertheless, some hurdles such as, for instance, impulse arising from appliances equipped with a switching regulator, pose a great challenge to the signal quality of service assured by the PLC. Considering an effective but low-complexity scheme to combat the impulse, we place a limiter in the very front end of the receiver but forgo the knowledge of the power ratio between the impulse and the background noise. In addition, channel coding in couple with the limiter has been investigated for OFDM systems undergoing the impulse. We extend the scenario by taking into account the above-mentioned clipper and indispensable power amplifier at the transmitter side and by accommodating the clipping noise to the receiver. Simulations are carried out with a number of parameters such as, for example, clipping ratio and IBO varied to demonstrate that with regard to which ranges of parameters the effectiveness of the proposed scheme can be asserted.

    第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 章節概述 2 第2章 IEEE 1901系統架構及脈衝環境 3 2.1 IEEE 1901系統 3 2.1.1 IEEE 1901系統架構 4 2.1.2 雙輸入渦輪碼編碼器 5 2.1.3 渦輪碼交錯器(Turbo code interleaver) 7 2.1.4 通道交錯器(Channel interleaver) 9 2.2 正交分頻多工(OFDM) 12 2.3 峰均值功率比(Peak to Average Power Ratio,PAPR) 14 2.3.1 峰均值功率比(PAPR)介紹 14 2.3.2 非線性功率放大器(Nonlinear power amplifier) 18 2.4 電力線環境 23 2.4.1 Bernoulli-Gaussian (BG) 脈衝雜訊模型 23 2.4.2 Additive White Class A Noise (AWAN) 模型 23 2.4.3 BG脈衝雜訊模型和AWAN模型比較 24 第3章 效能補償技術 26 3.1 限幅器(Limiter) 26 3.1.1 限幅器臨界值之選取 26 3.1.2 訊號失真之臨界值選取 27 3.2 雙輸入渦輪碼 29 3.2.1 Symbol to bit (Bit matrix) 29 3.2.2 雙輸入渦輪碼解碼器 31 3.2.3 脈衝雜訊之通道估測(LLR) 36 3.3 CNEC(Clipping noise estimation and cancellation)37 第4章 模擬結果 39 4.1 基本IEEE 1901系統效能分析 39 4.1.1 基本IEEE 1901系統(AWGN) 39 4.1.2 IEEE 1901 系統(功率放大器 & 脈衝雜訊) 41 4.2 在脈衝環境使用限幅器及CNEC 演算法之效能分析 43 4.2.1 對抗脈衝雜訊之限幅器應用 43 4.2.2 在脈衝環境中使用CNEC消除裁剪雜訊 44 4.3 裁剪與功率放大器之效能分析 49 第5章 結論與未來研究方向 57 附錄 60

    [1]IEEE Std 1901-2010, “IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications,” IEEE Communications Society., pp. 1100–1164, Dec. 2010.
    [2]楊儒斌,IEEE 1901寬頻電力線系統在AWAN通道下之效能分析,國立台灣科技大學電機工程系碩士學位論文,民國一百年十一月。
    [3]楊永軒,窄頻電力線通訊系統研究與OFDM Modem實作,國立台灣科技大學電機工程系碩士學位論文,民國一零一年七月。
    [4]Steve C. Thompson , John G. Proakis , and James R. Zeidler, “ The Effectiveness    of Signal Clipping for PAPR and Total Degradation Reduction in OFDM Systems,” IEEE Global Telecommunications Conf., vol. 5, Dec. 2005, pp. 2807 - 2811.
    [5]Y. H. Ma and P. L. So, “Performance analysis of OFDM systems for broadband power line communications under impulsive noise and multipath effects,” IEEE Trans. On Power Delivery., vol. 20, pp. 674 – 682, Apr. 2005.
    [6]M. Ghosh, “Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems,” IEEE Trans. Commun., vol. 44, pp. 145 – 147, Feb. 1996.
    [7]D. Middleton, “Statistical-physical model of electromagnetic interference,” IEEE Trans. Electromagn. Compat., vol. EMC-19, pp. 106 – 127, Aug. 1977.
    [8]D. Middleton, “Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference [10],” IEEE Trans. Electromagn. Compat., vol. EMC-21, pp. 190–208, Aug. 1979.
    [9]D.-F. Tseng, Y.-S. Han, W.-H. Mow and J. Deng, “Efficient decoding over power-line channels,” IEEE Fifth International Workshop on Signal Design and its Applications in Communications (IWSDA'11) .,China, Oct. 2011, pp. 138 - 141.
    [10]Hangjun Chen,Alexander M.Haimovich, “Iterative Estimation and Cancellation of Clipping Noise for OFDM Signals ,“ IEEE Communications Letters., vol. 7 , pp. 305 – 307, July. 2003.
    [11]Ga‥etan Ndo, Pierre Siohan, Marie-H’el`ene Hamon and J’er’emy Horard, “Optimization of Turbo Decoding Performance in the Presence of Impulsive Noise Using Soft Limitation at the Receiver Side,” in Proc. IEEE Global Telecommunications Conf. , Nov. 2008, pp. 1 - 5.
    [12]Shu Lin, Costello. Error Control Coding (2nd edition). United States:Prentice Hall, 2004.
    [13]Y.-S. Han. Class Lecture, Topic:”Turbo decoding.” Communication Engineering, National Taiwan University of Science and Technology, Taipei, 2010.
    [14]Daisuke Umehara, Hiroshi Yamaguchi, and Yoshiteru Morihiro, “Turbo Decoding in Impulsive Noise Environment,” IEEE Global Telecommunications Conf. , vol. 1, Nov. 2004, pp. 194 - 198.
    [15]A. N. D’Andrea, et al., “RF Power Amplifier Linearization Through Amplitude and Phase Predistortion,” IEEE Trans. Commun., vol. 44 , pp. 1477–1484 , Nov. 1996.

    無法下載圖示 全文公開日期 2017/11/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE