簡易檢索 / 詳目顯示

研究生: 陳躍升
Yue-Sheng Chen
論文名稱: 運用阿克曼原理生成四足機器人的行進間轉彎步態
GENERATING TURNING GAIT OF QUADRUPED ROBOTS BASED ON ACKERMAN PRINCIPLE
指導教授: 鄧惟中
Wei-Chung Teng
口試委員: 郭重顯
Chung-Hsien Kuo
李蔡彥
Tsai-Yen Li
蕭欽奇
Chin-Chi Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 54
中文關鍵詞: 步態轉彎機器人阿克曼四足
外文關鍵詞: Turning, Robot, Quadruped, Ackerman Principle, Gait
相關次數: 點閱:209下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 與輪型機器人相較,步行機器人在崎嶇地形移動上有較多的優勢,例如步行機器人可以比輪型機器人有更多維持平衡的機制。相對的,在設計層面或是製造層面上步行機器人也都比輪型機器人來得困難,而「步態」(Gait) 的設計就是步行機器人特有的重要因素。步行機器人的移動是根據多個步態所定義的,任何一個錯誤的步態都有可能使步行機器人的動作不如預期,甚至跌倒,所以如何產生出一個穩定的步態是值得去研究和探討的。
    在過去,如果一個四足步行機器人想要在直行步態下做行進間轉彎,它需要改變其步伐以完成轉彎的動作,然而在自然界中很少有生物會去更改步伐以進行轉彎。在本篇論文中,我們使用了汽車迴轉時的一個基本理論-阿克曼原理,發展出Ackerman Quadruped Gait(AQ-Gait) 演算法,在給定迴轉半徑與每步的迴轉徑度下,可以維持直行的步伐並自動生成四足步態進行平穩的迴轉。論文並透過Webots 機器人模擬器驗證四足機器人確實可在維持身體平衡的狀況下走出圓形軌跡。


    Compared with wheeled robots, walking robots have more advantages to traverse
    irregular terrain. However, the latter have more difficulties than the former on designing and manufacturing complexity. "Gait" is the biggest distinctness between wheeled and walking robots. The moving progress of a walking robot is composed by many gaits. A wrong gait might cause the robot falls down and fails to work well, so how to make a stable gait is critical issue to robot design and research.
    In the past, if a walking robot needs to make a turn while walking the straight line,it must change its footfall sequence to do this. However, few creatures purposely change their walking pattern for turning. In this thesis, an algorithm named Ackerman Quadruped Gait (AQ-Gait) is developed, upon the base of the Ackerman principle, to generate the required gate for any given turning center and turning radius per step. The advantages of AQ-Gait include that the generated gait shares the same footfall sequence with that of straight gaits and the body of robot is stable during the process of turning. Experiments are performed on the Webots robot simulator and the candidate quadruped robot does walk round trajectories with only minor swinging.

    論文口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 論文口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1 Researches of Quadruped Robot's Gaits . . . . . . . . . . . . . . . 11 1.2 Purpose of This Research . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1 Stability of Straight Gait . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Traditional Turning Gait . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Ackerman Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Ackerman Quadruped Gait . . . . . . . . . . . . . . . . . . . . . . 17 3 Generation of AQ-Gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Model of Movement . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Phases of a Gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Start Position . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 First Phase: Moving Front-Left Leg . . . . . . . . . . . . . . 22 3.2.3 Second Phase: Moving Rear-Right Leg . . . . . . . . . . . 23 3.2.4 Third Phase: Moving Front-Right Leg . . . . . . . . . . . . 24 3.2.5 Fourth Phase: Moving Rear-Left Leg . . . . . . . . . . . . . 25 3.2.6 Set the Center as Origin . . . . . . . . . . . . . . . . . . . . 26 3.3 Restriction of Moving . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.1 The Restriction of Length . . . . . . . . . . . . . . . . . . . 29 3.3.2 The Collision Restriction . . . . . . . . . . . . . . . . . . . . 29 3.4 The Procedure of Gait Generation . . . . . . . . . . . . . . . . . . 29 4 Applying to AIBO Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 Architecture of AIBO ERS-210 . . . . . . . . . . . . . . . . . . . . 32 4.2 Inverse Kinematics of AIBO Robot . . . . . . . . . . . . . . . . . . 33 4.2.1 Inverse Kinematics on Front-Left Leg . . . . . . . . . . . . 33 4.2.2 Inverse Kinematics on Front-Right Leg . . . . . . . . . . . . 36 4.2.3 Inverse Kinematics on Rear-Left Leg . . . . . . . . . . . . . 40 4.2.4 Inverse Kinematics on Rear-Right Leg . . . . . . . . . . . . 40 4.3 Expected Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 Simulation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.1 Trajectory Experiment . . . . . . . . . . . . . . . . . . . . . 44 5.2.2 Experiment of Static Stableness . . . . . . . . . . . . . . . 45 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 授權書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    [1] Y. Sakakibara, K. Kan, Y. Hosoda, M. Hattori, and M. Fujie, ''Foot trajectory for
    a quadruped walking machine,'' in Proceedings of the IEEE/RSJ International
    Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 315-322,
    1990.
    [2] J. Furusho, A. Sano, M. Sakaguchi, and E. Koizumi, ''Realization of bounce
    gait in a quadruped robot with articular-joint-type legs,'' in Proceedings of
    1995 IEEE International Conference on Robotics and Automation, vol. 1,
    pp. 697-702, Jan 1995.
    [3] J. Villanova, J.-C. Guinot, P. Neveu, and J.-P. Gasc, ''Quadrupedal mammal
    locomotion dynamics 2d model,'' in Proceedings of the IEEE/RSJ International
    Conference on Intelligent Robots and Systems(IROS), vol. 3, pp. 1785-
    1790, 2000.
    [4] D. Pongas, M. Mistry, and S. Schaal, ''A robust quadruped walking gait for
    traversing rough terrain,'' in Proceedings of 2007 IEEE International Conference
    on Robotics and Automation, pp. 1474-1479, Mar 2007.
    [5] L. Sun, Y. Zhou, W. Chen, H. Liang, and T. Mei, ''Modeling and robust control
    of quadruped robot,'' in Proceedings of International Conference on Information
    Acquisition 2007 (ICIA '07), pp. 356-360, Jun 2007.
    [6] X. Chen, Y. Sun, Q. Huang, W. Jia, and H. Pu, ''Development of multi-legged
    walking robot using reconfigurable modular design and biomimetic control
    architecture,'' Journal of System Design and Dynamics, vol. 2, pp. 401-412,
    Jan 2008.
    [7] S. Hirose, ''A study of design and control of a quadruped walking vehicle,''
    The International Journal of Robotics Research, vol. 3, no. 2, pp. 113-133,
    1984.
    [8] C.-D. Zhang and S.-M. Song, ''Stability analysis of wave-crab gaits of a
    quadruped,'' Journal of Robotic Systems, vol. 7, no. 2, pp. 243-276, 1990.
    [9] M. Lie and M. Peisun;, ''A study of turning gait control for quadruped walking
    vehicle,'' in Proceedings of the IEEE/RSJ International Conference on
    Intelligent Robots and Systems (IROS), vol. 3, pp. 1524-1527, Oct 1991.
    [10] M. Fujita and H. Kitano, ''Development of an autonomous quadruped robot
    for robot entertainment,'' Autonomous Robots, vol. 5, pp. 7-18, Jan 1998.
    [11] R. McGhee, ''Some finite state aspects of legged locomotion,'' Mathematical
    Biosciences, vol. 2, no. 1-2, pp. 67-84, 1968.
    [12] R. B. Mcghee and A. A. Frank, ''On the stability properties of quadruped
    creeping gaits,'' Mathematical Biosciences, vol. 3, pp. 331-351, Aug 1968.
    [13] K. Tsujita, H. Toui, and K. Tsuchiya, ''A study on adaptive generation of motion
    pattern of a quadruped locomotion robot,'' in SICE 2004 Annual Conference,
    vol. 3, pp. 2057-2062, Jan 2004.
    [14] S.-H. Park, D.-S. Kim, and Y.-J. Lee, ''Discontinuous spinning gait of a
    quadruped walking robot with waist-joint,'' in Proceedings of the IEEE/RSJ International
    Conference on Intelligent Robots and Systems (IROS), pp. 2744-
    2749, Jul 2005.
    [15] C. Zhang and S. Song, ''Turning gait of a quadrupedal walking machine,''
    in Proceedings of 1991 IEEE International Conference on Robotics and Automation,
    vol. 3, pp. 2106-2112, Mar 1991.
    [16] R. Colyer and J. Economou, ''Comparison of steering geometries for multiwheeled
    vehicles by modelling and simulation,'' in Proceedings of the 37th
    IEEE Conference on Decision and Control, vol. 3, pp. 3131-3133, Nov 1998.
    [17] W. Sienel and J. Ackermann, ''Automatic steering of vehicles with reference
    angular velocity feedback,'' in American Control Conference, vol. 2, pp. 1957-
    1958, Jan 1994.
    [18] P. Pal and K. Jayarajan, ''Generation of free gait - a graph search approach,''
    IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 299-305,
    1991.
    [19] SONY co., Open-R Software Development Kit, 1998.
    [20] 李文凱, '' 四足機械人轉彎步態的動態生成方法,'' 台灣科技大學碩士學位論文,
    2006.

    QR CODE