簡易檢索 / 詳目顯示

研究生: Andika Pramanta Yudha
Andika - Pramanta Yudha
論文名稱: 無感測器順應式控制之下肢外骨骼機器人體重支撐跑步機復健訓練
Force Sensorless Compliance Control of a Lower-limb Exoskeleton Robot for Body-weight Support Treadmill Rehabilitation Training
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: Gee-Sern Hsu
Jison Hsu
Jerry Lin
Jerry Lin
Sun-Feng Su
Sun-Feng Su
Shiuh-Jer Huang
Shiuh-Jer Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 86
中文關鍵詞: N/A
外文關鍵詞: FAT based adaptive control, disturbance observer.
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N/A


    This research represents a 5 degree of freedom (DOF) wearable lower body exoskeleton with a model-based compensation control framework to support hip-knee rehabilitation. Each exoskeleton leg is a 2 DOF 2D manipulator robot. To design the rehabilitation tasks, we use the function approximation technique (FAT) based adaptive control on each 2 DOF leg for position control, and a compliance control for 1 DOF upper part motor to lift the body according to the ground contact force estimated by disturbance observer. The exoskeleton control movement was realized by designing trajectory for leg movement and using FAT based adaptive control as the position control without acceleration feedback and system dynamics, so the natural system dynamics can be adaptively compensated. According to the simulation result, the disturbance observer can successfully estimate ground contact force with acceptable error as the force input to the compliance control applied in 1 DOF motor to lift the main body when performing walking sequence on treadmill. FAT based adaptive control represents the better performance than the conventional proportional derivative (PD) control. Moreover the FAT based adaptive control is capable of dealing with different subject without any changes in control parameters.

    MASTER’S THESIS RECOMMENDATION FORMI QUALIFICATION FORM BY MASTER’S DEGREE EXAMINATION COMMITTEEII ABSTRACTIII ACKNOWLEDGEMENTIV TABLE OF CONTENTSV LIST OF TABLESVII LIST OF FIGURESVIII CHAPTER 1 : INTRODUCTION1 1.1.Background1 1.2.Objectives2 1.3.Organization of the Thesis2 CHAPTER 2 : LITERATURE REVIEW3 2.1.FAT Based Adaptive Control4 2.2.Disturbance Observer5 CHAPTER 3 : DYNAMICS MODEL OF EXOSKELETON8 3.1.Introduction8 3.2.Exoskeleton Kinematics9 3.2.1Forward Kinematics10 3.2.2Inverse Kinematics13 3.3.Jacobian Matrix14 3.4.Exoskeleton Dynamic Model15 3.4.1Exoskeleton Kinetics and Potential Energy16 3.5.Main Body Dynamic20 CHAPTER 4 : CONTROL SYSTEM DESIGN22 4.1.Non-Linear Disturbance Observer22 4.1.1Properties for Manipulators Dynamic Model23 4.1.2Basic Disturbance Observer26 4.1.3Acceleration Free Disturbance Observer27 4.1.4Nonlinear Disturbance Observer Design28 4.1.4.1Disturbance Observer Stability Proof28 4.1.4.2Disturbance Observer Gain Design Method30 4.2.FAT-Based regressor-free adaptive control32 4.3.Main Body Position Control34 CHAPTER 5 : SIMULATION AND EXPERIMENTAL RESULT36 5.1.The Structure of Overall System36 5.1.1Motion Planner37 5.1.2Inverse Kinematic39 5.1.3Adaptive Control39 5.1.4Disturbance Observer40 5.1.5Main Body Compliance Control42 5.2.Simulation42 5.2.1Simulation Parameters43 5.2.2Simulation Result45 5.3.Experimental Result52 5.3.1Experimental Setup53 5.4.Experimental Result55 CHAPTER 6 : CONCLUSION AND FUTURE WORK72 REFERENCE73  

    [1]P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, and M. Van der Loos, “Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper limb motor function following stroke,” Archives Phys. Med. Rehabil., vol. 83, no. 7, pp. 952–959, Jul. 2002.
    [2]R.J. Sanchez, J. Liu, S. Rao, P. Shah, R. Smith, T. Rahman, S.C. Cramer, J.E. Bobrow, and D.J. Reinkensmeyer, “Automating arm movement training following severe stroke: Functional exercises with quantitative feedback in a gravity-reduced environment,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 3, pp. 378–389, Sep. 2006. pp. 952–959, Jul. 2002.
    [3]L.E. Kahn, M.L. Zygman, W.Z. Rymer, and D.J. Reinkensmeyer, “Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study,” J. NeuroEng. Rehabil., vol. 3, no. 12, pp. 1–13, Jun. 2006.
    [4]J.C. Perry, J. Rosen, and S. Burns, “Upper-limb powered exoskeleton design,” IEEE Trans. Mechatronics, vol. 12, no. 4, pp. 408–417, Aug. 2007.
    [5]T. Nef, M. Guidali, and R. Riener, “ARMin III—Arm therapy exoskeleton with an ergonomic shoulder actuation,” Appl. Bionics Biomech., vol. 6, no. 2, pp. 127–142, Jul. 2009.
    [6]H.I. Krebs, N. Hogan, M.L. Aisen, and B. T. Volpe, “Robot-aided neuro rehabilitation,” IEEE Trans. Rehabil. Eng., vol. 6, no. 1, pp. 75–87, Mar. 1998.
    [7]N.G. Tsagarakis and D.G. Caldwell, “Improving mouse-based computer interaction in users with weak upper limb motion control during using a haptic assistive system,” IEEE Trans. Human-Mach. System., vol. 43, no. 2, pp. 177–187, Mar. 2013.
    [8]G. Rosati, P. Gallina, and S. Masiero, “Design, implementation and clinical tests of a wire-based robot for neuro rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, pp. 560-569, Dec. 2007.
    [9]Y. Mao and S.K. Agrawal, “Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation,” IEEE Trans. Robot., vol. 28, no. 4, pp. 922–931, Dec. 2007.
    [10]K. Ohnishi, M. Shibata, and T. Murakami, “Motion control for advanced mechatronics,” IEEE Trans. Mechatron., vol. 1, no. 1, pp. 56–67, Mar. 1996.
    [11]B. Ugurlu, M. Nishimura, K. Hyodo, M. Kawanishi, and T. Narikiyo, "Proof of Concept for Robot-Aided Upper Limb Rehabilitation Using Disturbance Observers," IEEE Trans. Human-Mach. System., vol.45, no.1, pp.110-118, Feb. 2015
    [12]J.J. Slotine and W. Li, Applied nonlinear control. New Jersey, Prentice-Hall, 1991.
    [13]S. Jung and T.C. Hsia, “Neural network impedance force control of robot manipulator,” IEEE Trans. Ind. Electron. 45(3), 451–461, 1998.
    [14]Y.D. Song, “Adaptive motion tracking control of robot manipulators—non-regressor based approach,” Int. J. Control 63(1), pp. 41–54, 1996.
    [15]C.Y. Su and Y. Stepanenko, “Adaptive control for constrained robots without using regressor,” Proc. 1996 IEEE Robotics and Automation Conf., pp. 264–269, 1996.
    [16]A.C. Huang, S.C. Wu and W.F. Ting, “A FAT-based adaptive controller for robot manipulators without regressor matrix: Theory and experiments,” Robotica 24, pp. 205–210, 2006.
    [17]C.Y. Kai and A.C Huang. “A regressor-free adaptive controller for robot manipulators without Slotine and Li's modification,” Robotica, 31, pp. 1051-1058, 2013.
    [18]C.Y. Kai and A.C. Huang. "A regressor-free adaptive impedance controller for robot manipulators without Slotine and Li's modification: theory and experiments,” Robotica, 33, pp. 638-648, 2015.
    [19]C.S. Liu and H. Peng, “Disturbance observer based tracking control,” ASME Trans. Dynamic Syst. Measurement and Control, 122, pp. 332–335, 2000.
    [20]C.H. Choi and N. Kwak, “Robust control of robot manipulator by model- based disturbance attenuation.” IEEE Trans Mechatronics, pp. 511–513, Dec. 2003.
    [21]S. Park and S. Lee. “Disturbance observer based robust control for industrial robots with flexible joints,” Proc. Int. Control, Automation and Syst. Conf., pp. 2863–2868, 2007.
    [22]C. Zhongyi, S. Fuchun, and C. Jing, “Disturbance observer-based robust control of free-floating space manipulators,” IEEE Syst. J., pp 114–119, Mar. 2008.
    [23]B. Bona and M, Indri, “Friction compensation in robotics: An overview,” Proc. IEEE Decision and Control Conf., pp. 4360–4367, 2005.
    [24]N. Shimada, K. Onishi, S. Kumagai, and T. Miyazaki, “Smooth touch and force control to unknown environment without force sensor for industrial robot.” Proc. IEEE International Workshop on Advanced Motion Control, pp. 36–41, 2010.
    [25]W.H. Chen, D.J. Balance, P.J. Gawthrop, and J. O’Reilly, J. “A nonlinear disturbance observer for robotic manipulators.” IEEE Trans. on Ind. Elect., pp 932–938, Aug. 2000.
    [26]A. Nikoobin and R. Haghighi, “Lyapunov-based nonlinear disturbance observer for serial n-link robot manipulators,” Intell. &Robotic Syst. J., pp 135–153, Jul. 2009.
    [27]A. Mohammadi, M. Tavakoli, H.J. Marquez, and F. Hashemzadeh. "Nonlinear disturbance observer design for robotic manipulators," Control Eng. Practice, pp. 253-267, 2013.
    [28]蘇昶瑋, “承重跑步機訓練之下肢外骨骼復健機器人機械設計與實現,”碩士學位論文,國立台灣科技大學,民國104年。
    [29]許妙如, “承重跑步機訓練之下肢外骨骼復健機器人滑動模式控制,”碩士學位論文,國立台灣科技大學,民國104年。
    [30]M. Spong and M. Vidyasagar, Robot Dynamics and Control. New York, John Wiley and Sons, 1989.

    無法下載圖示 全文公開日期 2021/02/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE