簡易檢索 / 詳目顯示

研究生: SUONG THI THU NGUYEN
SUONG THI THU NGUYEN
論文名稱: 以聚醚胺與半胱胺酸改質雙馬來醯亞胺/1,3-二丁基-2-硫代巴比妥酸藥物傳遞之應用
N, N’-BISMALEIMIDE-4, 4’-DIPHENYLMETHANE/1, 3-DIBUTYL-2-THIOBARBITURIC ACID FOR DRUG DELIVERY
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 邱信程
Hsin-Cheng Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 88
中文關鍵詞: polymeric carrierdrug deliveryk562 leukemia cell1,3-dibutyl-2-thiobarbituric acidHela cellanti-cancer polymeric carrier
外文關鍵詞: polymeric carrier, drug delivery, k562 leukemia cell, 1,3-dibutyl-2-thiobarbituric acid, Hela cell, anti-cancer polymeric carrier
相關次數: 點閱:275下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究專注於高分子合成雙馬來醯亞胺(N,N - bismaleimide-4,4-diphenylmethane, BMI)與1,3-二丁基-2-硫代巴比妥酸(N,N-dibutyl-2-thiobarbituric acid, DBTB)。合成後的產物,以Jeffamine@M1000和L-Cysteine進行改質,使產物具有酸鹼應答姓。根據文獻中提及DBTD之生物特性,此產物預期可合成出對某些癌症細胞具有毒性選擇性之藥物載體。
    本研究分析技術包含動態光散射(Dynamic light scattering, DLS)、傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)與墊子能量損失光譜(Energy-dispersive X-ray spectroscopy, EDX)以確認合成出之高分子藥物載體。另外,利用Dox (Doxorubicin)作為藥物模型測試藥物包覆效率(Drug loading efficiency, DLE)、藥物包覆量(Drug loading content, DLC)和藥物酸鹼響應釋放實驗。
    再以老鼠纖維細胞(L929)、人類子宮頸癌細胞(Hela)和慢性髓細胞白血病(K562)進行體外實驗和包覆Dox之高分子載體的細胞生物毒性實驗。
    整體而言,實驗結果顯示此載體在藥物載體系統有作為刺激性載體之可能性。


    This work focus on the synthesis of polymer from the polymerization reaction of N,N-bismaleimide-4,4-diphenylmethane (BMI) and N,N-dibutyl-2-thiobarbituric acid (DBTB). In the process, the synthesized polymer was modified by Jeffamine@M1000 and L-Cysteine to get the pH-responsiveness behavior. Based on the biological properties of DBTB reported, the obtained carriers are expected to have the selectivity toxicity towards some cancer cell lines.
    A combination of analytical techniques including dynamic light scattering (DLS), Zeta potential, differential scanning calorimetry (DSC), infrared (FTIR) spectroscopy and energy-dispersive X-ray spectroscopy (EDX) have been used to study and characterize the polymeric carriers. Besides, the loading efficiency (DLE), the drug loading (DLC) and pH-responsive release behavior were evaluated utilizing Doxorubicin (DOX) as a model drug. Furthermore, L929 fibroblast mouse, the human cervical cancer (HeLa) and K562 chronic myeloic leukemia were used for in vitro studies and cell cytotoxicity of DOX incorporated in polymeric carrier was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In summary, the results suggest that the synthesized carriers could be promising as stimuli carrier for drug delivery system.

    Table of Contents Abstract i Table of Contents ii Index of Figures v Index of Tables ix Chapter 1. Introduction 12 1.1 Introduction to nanosystems for drug delivery 12 1.2 Introduction to biological properties of 1,3-dibutyl-2-thiobarbituric acid (DBTB) 12 1.3 Introduction to self-terminated oligomer with hyper-branched architecture (STOBA) 13 Chapter 2 Literature Review 14 2.1 N,N-Dibutyl-2-thiobarbituric acid (DBTB) - barbituric acid derivatives. 14 2.2. The polymerization of N,N’-bismaleimide-4,4’-diphenylmethane (BMI) with N,N-dibutyl-2-thiobarbituric acid. 14 2.2 The pH-responsive polymer 16 2.2.1 The pH-Responsive acidic polymer 16 2.2.2 The pH-Responsive basic polymer 16 2.3 JEFFAMINE® M-1000 17 2.4 L-Cysteine 17 2.5 Microgel particles and hydrogel 18 2.5.1 Hydrogel 18 2.6 Colloidal particles 19 Chapter 3 Research Methodology 22 3.1 Chemical Materials 22 3.1.1 Chemicals for cell culture 23 3.2 Experimental 26 3.2.1 Synthesis of N,N’-Dibutyl-2- thiobarbituric Acid (DBTB) 26 3.2.2 The synthesis of STOBA solution (STOBA-s) 27 3.2.3 The in vitro cytotoxicity assay. 28 3.2.4 Subculturing adherent cells (Hela, L929) 32 3.2.5 MTT cytotoxicity test 38 3.2.6 The in vitro loading and release assay 42 3.2.7 Flow cytrometry protocol. 43 Chapter 4 Result and Discussion 45 4.1 Characterization of synthesized polymer. 45 4.1.1 DLS and Zeta potential 45 4.1.2 Differential Scanning Calorimetry 49 4.1.3 Fourier Transform Infrared Spectroscopy 50 4.1.4 Energy Dispersive X-ray (EDX) Analysis. 52 4.2 DLE and DLC 53 4.3 In Vitro Drug Release 56 4.3.1 BMI/DBTB – 10% Cysteine 56 4.3.2 BMI/JF/DBTB 58 4.4 The in vitro cytotoxicity study. 62 4.4.1 Cytotoxicity test 65 4.4.2 Flow cytometry 80 Chapter 5 - Conclusion 82 References 83

    1 V Balamuralidhara, TM Pramodkumar, N Srujana, MP Venkatesh, N Vishal Gupta, KL Krishna, and HV Gangadharappa, 'Ph Sensitive Drug Delivery Systems: A Review', Am J Drug Discov Dev, 1 (2011), 25.
    2 Alexander J Cunningham, Mattieu Robinson, Xavier Banquy, Jeanne Leblond, and XX Zhu, 'Bile Acid-Based Drug Delivery Systems for Enhanced Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and Release', Molecular pharmaceutics, 15 (2018), 1266-76.
    3 Yao Fu, and Weiyuan John Kao, 'Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems', Expert opinion on drug delivery, 7 (2010), 429-44.
    4 Nicolay N Golovnev, Maxim S Molokeev, Irina V Sterkhova, Yuriy V Goryunov, and Victor V Atuchin, 'New Class of Bicyclic Compounds Derived from Thiobarbituric Acid with Representative Compound 1, 3-Diethyl-7-Hydroxy-5, 5, 7-Trimethyl-2-Thioxo-1, 2, 3, 5, 6, 7-Hexahydro-4h-Pyrano [2, 3-D] Pyrimidin-4-One. Preparation, Crystal Structure, Mass Spectrometry and Ir Spectroscopy', Journal of Molecular Structure, 1102 (2015), 101-07.
    5 Kirpal S Gulliya, 'Anti-Cancer Uses for Barbituric Acid Analogs', (Google Patents, 1997).
    6 Piyush Gupta, Kavita Vermani, and Sanjay Garg, 'Hydrogels: From Controlled Release to Ph-Responsive Drug Delivery', Drug discovery today, 7 (2002), 569-79.
    7 Chia-Chian Hung, Wen-Chia Huang, Yi-Wen Lin, Ting-Wei Yu, Hsin-Hung Chen, Sung-Chyr Lin, Wen-Hsuan Chiang, and Hsin-Cheng Chiu, 'Active Tumor Permeation and Uptake of Surface Charge-Switchable Theranostic Nanoparticles for Imaging-Guided Photothermal/Chemo Combinatorial Therapy', Theranostics, 6 (2016), 302.
    8 Shafiu Abdullahi Kamba, Maznah Ismail, Samer Hasan Hussein-Al-Ali, Tengku Azmi Tengku Ibrahim, and Zuki Abu Bakar Zakaria, 'In Vitro Delivery and Controlled Release of Doxorubicin for Targeting Osteosarcoma Bone Cancer', Molecules, 18 (2013), 10580-98.
    9 Mahdi Karimi, Masoud Eslami, Parham Sahandi‐Zangabad, Fereshteh Mirab, Negar Farajisafiloo, Zahra Shafaei, Deepanjan Ghosh, Mahnaz Bozorgomid, Fariba Dashkhaneh, and Michael R Hamblin, 'Ph‐Sensitive Stimulus‐Responsive Nanocarriers for Targeted Delivery of Therapeutic Agents', Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8 (2016), 696-716.
    10 Sang Lee, and James Connor, 'Cell Death Mechanisms of Anti-Tumor Thiobarbituric Acid Compound for Cancers', in NEURO-ONCOLOGY (OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2016), pp. 45-45.
    11 Rui‑Fang Li, Ying‑Qian Feng, Jun‑Hui Chen, Lin‑Tong Ge, Shu‑Yuan Xiao, and Xue‑Lan Zuo, 'Naringenin Suppresses K562 Human Leukemia Cell Proliferation and Ameliorates Adriamycin-Induced Oxidative Damage in Polymorphonuclear Leukocytes', Experimental and therapeutic medicine, 9 (2015), 697-706.
    12 Kamran T Mahmudov, Maximilian N Kopylovich, Abel M Maharramov, Malahat M Kurbanova, Atash V Gurbanov, and Armando JL Pombeiro, 'Barbituric Acids as a Useful Tool for the Construction of Coordination and Supramolecular Compounds', Coordination Chemistry Reviews, 265 (2014), 1-37.
    13 Quoc-Thai Pham, Jung-Mu Hsu, Wan-Ju Shao, Fu-Ming Wang, and Chorng-Shyan Chern, 'Mechanisms and Kinetics of Isothermal Polymerization of N, N′-Bismaleimide-4, 4′-Diphenylmethane with 5, 5-Dimethylbarbituric Acid in the Presence of Triphenylphosphine', Thermochimica Acta, 655 (2017), 234-41.
    14 Chuntang Sun, Le Zhou, Maling Gou, Shuai Shi, Tao Li, and Jinyi Lang, 'Improved Antitumor Activity and Reduced Myocardial Toxicity of Doxorubicin Encapsulated in Mpeg-Pcl Nanoparticles', Oncology reports, 35 (2016), 3600-06.
    15 Wen-Hao Wei, Xue-Meng Dong, and Chen-Guang Liu, 'In Vitro Investigation of Self-Assembled Nanoparticles Based on Hyaluronic Acid-Deoxycholic Acid Conjugates for Controlled Release Doxorubicin: Effect of Degree of Substitution of Deoxycholic Acid', International journal of molecular sciences, 16 (2015), 7195-209.

    QR CODE