簡易檢索 / 詳目顯示

研究生: 黃正昌
Jheng-Chang Huang
論文名稱: Cascade Fluorescence Resonance Energy Transfer Studies of Pyrene, 3-Acetyl-7-N,N-Diethylcoumarin and Acridine Orange
Cascade Fluorescence Resonance Energy Transfer Studies of Pyrene, 3-Acetyl-7-N,N-Diethylcoumarin and Acridine Orange
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 100
中文關鍵詞: 螢光共振能量轉移量子效率能量轉移效率能量轉移速率常數猝滅Stern-Volmer定律
外文關鍵詞: quenching, rate constant, energy transfer efficiency, quantum yield, Fluorescence resonance energy transfer, Stern-Volmer law.
相關次數: 點閱:303下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗為設計分子間之級聯螢光共振能量轉移。此系統使用芘,3-乙醯基-7-N,N-二乙基香豆素(香豆素衍生物)和吖啶橙之乙醇溶液。芘和吖啶橙之混和溶液顯示有限的螢光共振能量轉移,因此藉由香豆素衍生物連結由芘到吖啶橙之螢光共振能量轉移。在此三種染料系統下,香豆素衍生物扮演雙重角色,其接受來自芘的能量(接受者)以及提供吖啶橙能量(捐贈者)。此現象可藉由三成份間的光譜重疊解釋,即: 芘的螢光帶重疊於香豆素衍生物的紫外光可見光吸收帶以及香豆素衍生物的螢光帶重疊於吖啶橙的紫外光可見光吸收帶。另外,藉由染料溶液的螢光強度與紫外光可見光吸收度來計算螢光共振能量轉移之相關參數,參數如下: 芘的量子效率(Ф)和能量轉移效率(ФT)、芘與香豆素衍生物之分子間距離(r1)、芘與吖啶橙之分子間距離(r3)以及芘與香豆素衍生物間的能量轉移速率常數(kT)。在此,會影響分析及計算之其它相關參數亦被仔細探討。例如:pH與螢光之相關性以及利用芘的I3/I1 和I5/I1之比值來分析染料混和溶液之極性變化。由上述之參數與條件,進而確認此三種染料之級聯螢光共振能量轉移之最大能量轉移效率。此外,香豆素衍生物加入芘溶液後,芘的猝滅行為可藉由Stern-Volmer定律分析得知。本研究之結果亦可應用於生物化學以及光電裝置之研究。


    In this study, an intermolecular cascade fluorescence resonance energy transfer (cascade FRET) was designed. For this system, ethanol solutions of pyrene (Py), 3-acetyl-7-N,N-diethylcoumarin (AC) and acridine orange (AO) were used. While the mixture of Py and AO solutions showed very limited FRET, it was observed that AC bridged the FRET from Py to AO. In the three dyes system, AC played a dual role, an acceptor for Py and a donor for AO. This phenomenon can be explained by the spectral overlaps between three components; between the emission band of Py and the UV-visible absorption band of AC, and between the emission band of AC and the UV-visible absorption band of AO. The parameters related to the FRET were calculated from the emission intensity and UV-visible absorbance of the solutions: quantum yield (Ф) of Py, energy transfer efficiency (ФT) of Py, distance (r1 or r3) between Py and AC or AO, respectively, rate constant (kT) for energy transfer between Py and AC. For these analyses, other parameters which could affect the calculations were carefully examined, such as the pH dependency on fluorescence and the polar variations in the mixed solutions, by the I3/I1 and I5/I1 of Py. Then, the condition to provide the maximum energy transfer efficiency was confirmed for the cascade FRET consisting of three components. Collaterally, the quenching behavior on Py was analyzed by Stern-Volmer law for AC added into the Py solution. These results are applicable to develop biochemical probes and photoelectric devices.

    A b s t r a c t I 摘 要 II Acknowledgements III Table of Contents V List of Figures VII List of Tables XI Chapter 1 General Introduction 1 1-1. Energy transfer 1 1-2. Fluorescence resonance energy transfer 2 1-3. Pyrene 5 Chapter 2 Research Methodology 6 2-1. Research design 6 2-2 Materials 7 2-3 Purification of AO 7 2-4 Experimental Procedures 10 2-4-1 Fluorescent properties of AC 10 2-4-2 FRET measurements in solution 11 2-4-3 Control experiment 16 2-5 Instruments 17 Chapter 3 Results and discussion 18 3-1 The spectral property of AC 18 3-2 The spectral overlap of emission and UV-visible absorption 21 3-3 Calculation of quantum yield of AC, R01 and R02 29 3-4 Spectral characteristics of Py, AC and AO in solution 32 3-4-1 The spectral analysis on emission and UV-visible absorption in solution 32 3-4-2 pH dependency 46 3-4-3 Comparison with control experiment 50 3-4-4 Quantum yield of Py and energy transfer in three dye mixture 60 3-4-5 Quenching behavior of AC on Py 72 Chapter 4 General Conclusions 76 References 77

    [1] B. A. Gregg, J. Sprague, and M. W. Peterson, "Long-Range Singlet Energy Transfer in Perylene Bis(phenethylimide) Films," J. Phys. Chem. B, vol. 101, pp. 5362-5369, 1997.
    [2] B. Howe and A. L. Diaz, "Characterization of host-lattice emission and energy transfer in BaMgAl10O17: Eu2+," J. Lumin., vol. 109, pp. 51-59, 2004.
    [3] K. Fujii, T. Kuroda, K. Sakoda, and N. Iyi, "Fluorescence resonance energy transfer and arrangements of fluorophores in integrated coumarin/cyanine systems within solid-state two-dimensional nanospace," J. Photochem. Photobiol. A: Chem., vol. 225, pp. 125-134, 2011.
    [4] J. R. Lakowicz, "Fluorescence Anisotropy," in Principles of Fluorescence Spectroscopy, J. Lakowicz, Ed., ed: Springer US, pp. 353-382, 2006
    [5] X.-Y. Sun, M. Gu, S.-M. Huang, X.-L. Liu, B. Liu, and C. Ni, "Enhancement of Tb3+ emission by non-radiative energy transfer from Dy3+ in silicate glass," Phys. B: Condensed Matter, vol. 404, pp. 111-114, 2009.
    [6] B. Valeur, "Effects of Intermolecular Photophysical Processes on Fluores- cence Emission," in Molecular Fluorescence, ed: Wiley-VCH Verlag GmbH, pp. 72-124, 2001.
    [7] M. J. Lohse, M. Bunemann, C. Hoffmann, J. P. Vilardaga, and V. O. Nikolaev, "Monitoring receptor signaling by intramolecular FRET," Curr. Opin. Pharmacol., vol. 7, pp. 547-553, 2007.
    [8] D. C. Lamb, "Single-Pair FRET: An Overview with Recent Applications and Future Perspectives," in Single Particle Tracking and Single Molecule Energy Transfer, ed: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 97-129, 2009.
    [9] D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, "CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay," Nano Lett., vol. 1, pp. 469-474, 2001.
    [10] T. Nishimura, Y. Ogura, and J. Tanida, "Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold," Appl. Phys. Lett., vol. 101, p. 233703, 2012.
    [11] S. Saini, H. Singh, and B. Bagchi, "Fluorescence resonance energy transfer (FRET) in chemistry and biology: Non-Forster distance dependence of the FRET rate," Chem. Sci., vol. 118, pp. 23-35, 2006.
    [12] V. Fernandez-Duenas, J. Llorente, J. Gandia, D. O. Borroto-Escuela, L. F. Agnati, C. I. Tasca, K. Fuxe, and F. Ciruela, "Fluorescence resonance energy transfer-based technologies in the study of protein-protein interactions at the cell surface," Methods, vol. 57, pp. 467-472, 2012.
    [13] E. Haas, "The Study of Protein Folding and Dynamics by Determination of Intramolecular Distance Distributions and Their Fluctuations Using Ensemble and Single-Molecule FRET Measurements," ChemPhysChem., vol. 6, pp. 858-870, 2005.
    [14] J. Lee, A. O. Govorov, and N. A. Kotov, "Bioconjugated Superstructures of CdTe Nanowires and Nanoparticles: Multistep Cascade Fӧrster Resonance Energy Transfer and Energy Channeling," Nano Lett., vol. 5, pp. 2063-2069, 2005.
    [15] A. Freer, S. Prince, K. Sauer, M. Papiz, A. H. Lawless, G. McDermott, R. Cogdell, and N. W. Isaacs, "Pigment–pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila," Structure, vol. 4, pp. 449-462, 1996.
    [16] R. Santra, J. Zobeley, L. S. Cederbaum, and N. Moiseyev, "Interatomic Coulombic Decay in van der Waals Clusters and Impact of Nuclear Motion," Phys. Rev. Lett., vol. 85, pp. 4490-4493, 2000.
    [17] K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations," Angew. Chem. Int. Ed. Engl., vol. 45, pp. 4562-4589, 2006.
    [18] T. Seidel, B. Seefeldt, M. Sauer, and K. J. Dietz, "In vivo analysis of the 2-Cys peroxiredoxin oligomeric state by two-step FRET," J. Biotechnol., vol. 149, pp. 272-279, 2010.
    [19] C. Li, J. Hu, and S. Liu, "Engineering FRET processes within synthetic polymers, polymeric assemblies and nanoparticles via modulating spatial distribution of fluorescent donors and acceptors," Soft Matter, vol. 8, pp. 7096, 2012.
    [20] S. M. Ameer-Beg, N. Edme, M. Peter, P. R. Barber, T. Ng, and B. Vojnovic, "Imaging protein-protein interactions by multiphoton FLIM," Proc SPIE., vol. 5139, pp. 180-189, 2003.
    [21] Y. V. Malyukin, S. L. Yefimova, A. N. Lebedenko, A. V. Sorokin, and I. A. Borovoy, "Nano-scale control of energy transfer in the system “donor–acceptor”," J. Lumin., vol. 112, pp. 439-443, 2005.
    [22] T. E. T. HA, D. F. OGLETREE, D. S. CHEMLA, P. R. SELVIN; S. WEISS, "Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor," Proc. Natl. Acad. Sci. U.S.A., vol. 93, pp. 6264–6268, 1996.
    [23] L. Gonzalez-Urbina, B. Kolaric, W. Libaers, and K. Clays, "Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence," Proc. SPIE., vol. 7713, pp. 771306-771309, 2010.
    [24] H. Wallrabe and A. Periasamy, "Imaging protein molecules using FRET and FLIM microscopy," Curr. Opin. Biotechnol., vol. 16, pp. 19-27, 2005.
    [25] C. Devadoss, P. Bharathi, and J. S. Moore, "Energy Transfer in Dendritic Macromolecules:  Molecular Size Effects and the Role of an Energy Gradient," J. Am. Chem. Soc., vol. 118, pp. 9635-9644, 1996.
    [26] D. M. Shcherbakova, M. A. Hink, L. Joosen, T. W. J. Gadella, and V. V. Verkhusha, "An Orange Fluorescent Protein with a Large Stokes Shift for Single-Excitation Multicolor FCCS and FRET Imaging," J. Am. Chem. Soc., vol. 134, pp. 7913-7923, 2012.
    [27] T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, "Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers," Appl. Phys. Lett., vol. 84, pp. 2904-2906, 2004.
    [28] W. Lin, L. Yuan, Z. Cao, Y. Feng, and J. Song, "Through-bond energy transfer cassettes with minimal spectral overlap between the donor emission and acceptor absorption: coumarin-rhodamine dyads with large pseudo-Stokes shifts and emission shifts," Angew. Chem. Int. Ed. Engl., vol. 49, pp. 375-379, 2010.
    [29] K. Truong and M. Ikura, "The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo," Curr. Opin. Struct. Biol., vol. 11, pp. 573-578, 2001.
    [30] D. M. Togashi and A. G. Ryder, "Assessing protein-surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and Fӧrster Energy Resonance Transfer," Biophys. Chem., vol. 152, pp. 55-64, 2010.
    [31] Y. Zeng, Y. Y. Li, J. Chen, G. Yang, and Y. Li, "Dendrimers: a mimic natural light-harvesting system," Chem Asian J., vol. 5, pp. 992-1005, 2010.
    [32] S. Y. Lee, H. J. Kim, J.-S. Wu, K. No, and J. S. Kim, "Metal ion-induced FRET modulation in a bifluorophore system," Tetrahedron Lett., vol. 49, pp. 6141-6144, 2008.
    [33] Y. H. Lee, M. H. Lee, J. F. Zhang, and J. S. Kim, "Pyrene excimer-based calix[4]arene FRET chemosensor for mercury(II)," J. Org. Chem., vol. 75, pp. 7159-7165, 2010.
    [34] K. Kikuchi, H. Takakusa, and T. Nagano, "Recent advances in the design of small molecule-based FRET sensors for cell biology," TrAC, Trends Anal. Chem., vol. 23, pp. 407-415, 2004.
    [35] M. H. Lee, H. J. Kim, S. Yoon, N. Park, and J. S. Kim, "Metal Ion Induced FRET OFF−ON in Tren/Dansyl-Appended Rhodamine," Org. Lett., vol. 10, pp. 213-216, 2008.
    [36] A. Hillisch, M. Lorenz, and S. Diekmann, "Recent advances in FRET: distance determination in protein–DNA complexes," Curr. Opin. Struct. Biol., vol. 11, pp. 201-207, 2001.
    [37] P. W. Vanderklish, L. A. Krushel, B. H. Holst, J. A. Gally, K. L. Crossin, and G. M. Edelman, "Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer," Proc. Natl. Acad. Sci. U. S. A., vol. 97, pp. 2253-2258, February 29, 2000.
    [38] E. Haustein, M. Jahnz, and P. Schwille, "Triple FRET: a tool for studying long-range molecular interactions," ChemPhysChem., vol. 4, pp. 745-748, 2003.
    [39] N. J. Turro and P. L. Kuo, "Pyrene excimer formations in micelles of nonionic detergents and of water-soluble polymers," Langmuir, vol. 2, pp. 438-442, 1986.
    [40] I. Yamazaki, N. Tamai, and T. Yamazaki, "Picosecond fluorescence spectroscopy on excimer formation and excitation energy transfer of pyrene in Langmuir- Blodgett monolayer films, " J. Phys. Chem., vol. 91, pp. 3572-3577, 1987.
    [41] J.-S. Yang, C.-S. Lin, and C.-Y. Hwang, "Cu2+-Induced Blue Shift of the Pyrene Excimer Emission:  A New Signal Transduction Mode of Pyrene Probes," Org. Lett., vol. 3, pp. 889-892, 2001.
    [42] G. Jones and V. I. Vullev, "Contribution of a Pyrene Fluorescence Probe to the Aggregation Propensity of Polypeptides," Org. Lett., vol. 3, pp. 2457-2460, 2001.
    [43] T. Yamanaka, Y. Takahashi, T. Kitamura, and K. Uchida, "Time-resolved fluorescence spectra of pyrene doped in amorphous silica glasses," Chem. Phys. Lett., vol. 172, pp. 29-32, 1990.
    [44] C. J. Yang, S. Jockusch, M. Vicens, N. J. Turro, and W. Tan, "Light-switching excimer probes for rapid protein monitoring in complex biological fluids," Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 17278-17283, 2005.
    [45] T. Shyamala, S. Sankararaman, and A. K. Mishra, "1,3,6,8-Tetraethynyl-pyrene and 1,3,6,8-tetrakis(trimethylsilylethynyl) pyrene: Photophysical properties in homoge- neous media," Chem. Phys., vol. 330, pp. 469-477, 2006.
    [46] S. Banerjee, N. Goswami, and S. K. Pal, "A potential carcinogenic pyrene derivative under Forster resonance energy transfer to various energy acceptors in nanoscopic environments," Chemphyschem., vol. 14, pp. 3581-3593, 2013.
    [47] T. I. Shoichi Ikeda, "Induced Optical Activity of Acridine Orange Bound to Poly-S-carboxymethyl-L-cysteine," Biopolymers., vol. 10, pp. 1743-1757, 1971.
    [48] T. A. Moore, M. L. Harter, and P.-S. Song, "Ultraviolet spectra of coumarins and psoralens," J. Mol. Spectrosc., vol. 40, pp. 144-157, 1971.
    [49] H. Zhang, T. Yu, Y. Zhao, D. Fan, L. Chen, Y. Qiu, L. Qian, K. Zhang, and C. Yang, "Crystal structure and photoluminescence of 7-(N,N′-diethylamino)-coumarin-3- carboxylic acid," Spectrochim. Acta Part A, vol. 69, pp. 1136- 1139, 2008.
    [50] M. N. Merzlyak and P. A. Kashulin, "Pyrene fluorescence probing of unsaturated lipids in Phytophthora infestans zoospores," Gen Physiol Biophys., vol. 10, pp. 561-568, 1991.
    [51] W. W. Reenstra, D. G. Warnock, V. J. Yee, and J. G. Forte, "Proton gradients in renal cortex brush-border membrane vesicles. Demonstration of a rheogenic proton flux with acridine orange," J. Biol. Chem., vol. 256, pp. 11663-11666, 1981.
    [52] B. Valeur, "Principles of Steady-State and Time-Resolved Fluorometric Techniques," in Molecular Fluorescence, ed: Wiley-VCH Verlag GmbH, pp. 155-199, 2001.
    [53] J. M. Serin, D. W. Brousmiche, and J. M. J. Frechet, "Cascade energy transfer in a conformationally mobile multichromophoric dendrimer," Chem. Commun., pp. 2605-2607, 2002.
    [54] M. H. Lee, D. T. Quang, H. S. Jung, J. Yoon, C.-H. Lee, and J. S. Kim, "Ion-Induced FRET On−Off in Fluorescent Calix[4]arene," J. Org. Chem., vol. 72, pp. 4242-4245, 2007.
    [55] S. Wang, B. S. Gaylord, and G. C. Bazan, "Fluorescein Provides a Resonance Gate for FRET from Conjugated Polymers to DNA Intercalated Dyes," J. Am. Chem. Soc., vol. 126, pp. 5446-5451, 2004.
    [56] D. K. Struck, D. Hoekstra, and R. E. Pagano, "Use of resonance energy transfer to monitor membrane fusion," Biochem., vol. 20, pp. 4093-4099, 1981.
    [57] N. Y. C. Chu, "Investigation of Energy-Transfer Mechanisms in Pyrene Crystals," . J. Chem. Phys., vol. 55, pp. 3059-3067, 1971.
    [58] D. Navarathne, Y. Ner, J. G. Grote, and G. A. Sotzing, "Three dye energy transfer cascade within DNA thin films," Chem. Commun., vol. 47, pp. 12125-12127, 2011.
    [59] S. Peralta, J.-L. Habib-Jiwan, and A. M. Jonas, "Ordered Polyelectrolyte Multilayers: Unidirectional FRET Cascade in Nanocompartmentalized Polyelectro- lyte Multilayers," Chem. Phys. Chem., vol. 10, pp. 137-143, 2009.
    [60] S. Fery-Forgues. D. J. Lavabre, "Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products," Chem. Educ., vol. 76, pp. 1260-1264, 1999.
    [61] J. N. D. a. G. A. Crosby, "The Measurement of Photoluminescence Quantum Yields. A Review," Phys. Chem., vol. 75, pp. 991-1024, 1971.
    [62] G. A. Reynolds and K. H. Drexhage, "New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers," Chem. Phys. Lett., vol. 13, pp. 222-225, 1975.
    [63] A. Takadate, T. Masuda, C. Murata, A. Isobe, T. Shinohara, M. Irikura, and S. Goya, "A Derivatizing Reagent-Kit Using a Single Coumarin Fluorophore," Anal. Sci., vol. 13, pp. 753-756, 1997.
    [64] J. Donovalova, M. Cigan, H. Stankovicova, J. Gaspar, M. Danko, A. Gaplovsky, and P. Hrdlovic, "Spectral properties of substituted coumarins in solution and polymer matrices," Molecules, vol. 17, pp. 3259-3276, 2012.
    [65] F. G. Sanchez and C. C. Ruiz, "Intramicellar energy transfer in aqueous CTAB solutions," J. Lumin., vol. 69, pp. 179-186, 1996.
    [66] A. Harriman, L. Mallon, and R. Ziessel, "Energy Flow in a Purpose-Built Cascade Molecule Bearing Three Distinct Chromophores Attached to the Terminal Acceptor," Chem.–Eur. J., vol. 14, pp. 11461-11473, 2008.
    [67] L. Stryer, "Fluorescence energy transfer as a spectroscopic ruler," Biochem., vol. 47, pp. 819-846, 1978.
    [68] J. R. Lakowicz, "Energy Transfer," in Principles of Fluorescence Spectroscopy, J. Lakowicz, Ed., Third Editon ed: Springer US, pp. 443-472, 2006.
    [69] J. Kriegsmann, M. Brehs, J. P. Klare, M. Engelhard, and J. Fitter, "Sensory rhodopsin II/transducer complex formation in detergent and in lipid bilayers studied with FRET," Biochim. Biophys. Acta., vol. 1788, pp. 522-531, 2009.
    [70] J. Rheims, J. Koser, and T. Wriedt, "Refractive-index measurements in the near-IR using an Abbe refractometer," Meas. Sci. Technol., vol. 8, pp. 601-605, 1997.
    [71] B. Valeur, "Characteristics of Fluorescence Emission," in Molecular Fluorescence, ed: Wiley-VCH Verlag GmbH, pp. 34-71, 2001.
    [72] B. IB., Energy transfer parameters of aromatic compounds. Academic Press. New York: Academic Press, 1973.
    [73] A. Valanne, P. Malmi, H. Appelblom, P. Niemela, and T. Soukka, "A dual-step fluorescence resonance energy transfer-based quenching assay for screening of caspase-3 inhibitors," Anal Biochem., vol. 375, pp. 71-81, 2008.
    [74] M. A. Hossain, H. Mihara, A. Ueno, "Novel Peptides Bearing Pyrene and Coumarin Units with or without β-Cyclodextrin in Their Side Chains Exhibit Intramolecular Fluorescence Resonance Energy Transfer," J. Am. Chem. Soc., vol. 125, pp. 11178-11179, 2003.
    [75] M. A. Hossain, H. Mihara, and A. Ueno, "Fluorescence resonance energy transfer in a novel cyclodextrin–Peptide conjugate for detecting steroid molecules," Bioorg. Med. Chem. Lett., vol. 13, pp. 4305-4308, 2003.
    [76] A. Dietrich, V. Buschmann, C. Muller, and M. Sauer, "Fluorescence resonance energy transfer (FRET) and competing processes in donor–acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data," Rev. Mol. Biotechnol., vol. 82, pp. 211-231, 2002.
    [77] B. Aydin, M. Acar, M. Arik, and Y. Onganer, "The fluorescence resonance energy transfer between dye compounds in micellar media," Dyes and Pigments, vol. 81, pp. 156-160, 2009.
    [78] Z. Dai, L. Dahne, E. Donath, and H. Mohwald, "Mimicking Photosynthetic Two-Step Energy Transfer in Cyanine Triads Assembled into Capsules," Langmuir, vol. 18, pp. 4553-4555, 2002.
    [79] A. Wagh, F. Jyoti, S. Mallik, S. Qian, E. Leclerc, and B. Law, "Polymeric nanoparticles with sequential and multiple FRET cascade mechanisms for multicolor and multiplexed imaging," Small, vol. 9, pp. 2129-2139, 2013.
    [80] J. K.Hannestad, P. Sandin, B. Albinsson, "Self-Assembled DNA Photonic Wire for Long-Range Energy Transfer," J. Am. Chem. Soc., vol. 130, pp. 15889-15895, 2008.
    [81] G. v. Bunau, "J. B. Birks: Photophysics of Aromatic Molecules. Wiley- Interscience, London 1970. 704 Seiten. Preis: 210s," Berichte der Bunsengesellschaft fur physikalische Chemie., vol. 74, pp. 1294-1295, 1970.
    [82] K. A. Kozyra, J. R. Heldt, H. A. Diehl, and J. Heldt, "Electronic energy transfer efficiency of mixed solutions of the donor–acceptor pairs: coumarin derivatives—acridine orange," J. Photochem. Photobiol. A: Chem., vol. 152, pp. 199-205, 2002.
    [83] K. K. Pandey and T. C. Pant, "Migration modulated donor-acceptor energy transfer in PMMA," J. Lumin., vol. 47, pp. 319-325, 1991.
    [84] B. Heeg, P. A. DeBarber, and G. Rumbles, "Influence of fluorescence reabsorption and trapping on solid-state optical cooling," Appl. Opt., vol. 44, pp. 3117-3124, 2005.
    [85] K. Kalyanasundaram, J. K. Thomas, "Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems," J. Am. Chem. Soc., vol. 99, pp. 2039-2044, 1977.
    [86] M. Yan, B. Li, and X. Zhao, "Determination of critical aggregation concentration and aggregation number of acid-soluble collagen from walleye pollock (Theragra chalcogramma) skin using the fluorescence probe pyrene," Food Chem., vol. 122, pp. 1333-1337, 2010.
    [87] G. Basu Ray, I. Chakraborty, and S. P. Moulik, "Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity," J. Colloid Interface Sci., vol. 294, pp. 248-254, 2006.
    [88] S.-H. Chen, C. E. Evans, and V. L. McGuffin, "Selective fluorescence quenching of polynuclear aromatic hydrocarbons in microcolumn liquid chromatography," Anal. Chim. Acta., vol. 246, pp. 65-74, 1991.
    [89] F. Navarro-Villoslada, J. L. Urraca, M. C. Moreno-Bondi, and G. Orellana, "Zearalenone sensing with molecularly imprinted polymers and tailored fluorescent probes," Sens. Actuators B: Chem., vol. 121, pp. 67-73, 2007.
    [90] J. W. Carr and J. M. Harris, "Heterogeneity of reversed-phase chromatographic surfaces: quenching of sorbed pyrene fluorescence," Anal. Chem., vol. 59, pp. 2546-2550, 1987.
    [91] B. Raju B and T. S. Varadarajan, "Substituent and Solvent Effects on the Twisted Intramolecular Charge Transfer of Three New 7-(Diethylamino) coumarin-3- aldehyde Derivatives," J. Phys. Chem., vol. 98, pp. 8903-8905, 1994.
    [92] J. E. Lewis and M. Maroncelli, "On the (uninteresting) dependence of the absorption and emission transition moments of coumarin 153 on solvent," Chem. Phys. Lett., vol. 282, pp. 197-203, 1998.
    [93] V. K. Sharma, P. D. Saharo, N. Sharma, R. C. Rastogi, S. K. Ghoshal, and D. Mohan, "Influence of solvent and substituent on excited state characteristics of laser grade coumarin dyes," Spectrochim. Acta. A Mol. Biomol. Spectrosc., vol. 59, pp. 1161-1170, 2003.
    [94] A. Nakajima, "Fluorescence spectra of pyrene in chlorinated aromatic solvents," J. Mol. Spectrosc., vol. 11, pp. 429-432, 1976.
    [95] Y. N. Teo, E. T. B. Kool, "Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA," Bioconjugate Chem., vol. 20, pp.2371–2380, 2009.
    [96] J. R. Lakowicz, "Fluorophores," in Principles of Fluorescence Spectroscopy, J. Lakowicz, Ed., ed: Springer US, pp. 63-95, 2006.
    [97] B. Valeur, "Resonance Energy Transfer and Its Applications," in Molecular Fluorescence, ed: Wiley-VCH Verlag GmbH, pp. 247-272, 2001.
    [98] J. R. Lakowicz, "Mechanisms and Dynamics of Fluorescence Quenching," in Principles of Fluorescence Spectroscopy, J. Lakowicz, Ed., Third Editon ed: Springer US, pp. 331-351, 2006.
    [99] J. Michaelis, "Quantitative Distance and Position Measurement using Single- Molecule FRET," in Single Particle Tracking and Single Molecule Energy Transfer, ed: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 191-214, 2009.
    [100] L. Stryer and R. P. Haugland, "Energy transfer: a spectroscopic ruler," Proc. Natl. Acad. Sci., vol. 58, pp. 719-726, 1967.
    [101] J. R. Lakowicz, "Fluorescence Sensing," in Principles of Fluorescence Spectroscopy, J. Lakowicz, Ed., ed: Springer US, pp. 623-673, 2006.
    [102] H. Boaz and G. K. Rollefson, "The Quenching of Fluorescence. Deviations from the Stern-Volmer Law," J. Am. Chem. Soc., vol. 72, pp. 3435-3443, 1950.
    [103] L. K. Fraiji, D. M. Hayes, and T. C. Werner, "Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory," J. chem. Educ., vol. 69, pp. 424-428, 1992.
    [104] J. R. Lakowicz, "Quenching of Fluorescence," in Principles of Fluorescence Spectroscopy, J. Lakowicz, Ed., ed: Springer US, pp. 277-330, 2006.
    [105] P. Bairi, P. Chakraborty, B. Roy, and A. K. Nandi, "Sensing of Hg+2 and Ag+ through a pH dependent FRET system: Fabrication of molecular logic gates," Sensors Actuators B: Chem., vol. 193, pp. 349-355, 2014.

    QR CODE