簡易檢索 / 詳目顯示

研究生: 王文駿
WEN-CHUN WANG
論文名稱: 二氧化錫奈米線之光電導特性:光電導效率及量子效率研究
Photoconductivities in SnO2 nanowires: Photoconduction Efficiency and Quantum Efficiency
指導教授: 黃鶯聲
Ying-Sheng Huang
陳瑞山
Ruei-San Chen
口試委員: 趙良君
Liang -Chiun Chao
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 歸一化增益光電導增益光電導效率量子效率二氧化錫奈米線
外文關鍵詞: normalized gain, photoconductive gain, photoconduction efficiency, quantum efficiency, tin oxide, nanowires
相關次數: 點閱:380下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文著重探討二氧化錫(tin oxide, SnO2)奈米線之光電導特性與其傳輸機制。在計算光電導增益(photoconductive gain, Γ)的部分,我們可透過3.0 V的低偏壓便量測出二氧化錫奈米線其光電導增益值可達8x10^8,此數值為目前探討光電導效率之文獻研究的最高值。利用歸一化增益(normalized gain, Γn)去除元件特性上的實驗參數影響,二氧化錫奈米線其最高歸一化增益值可達20 cm^2/V,約略大於氧化鋅,二氧化鈦,三氧化鎢等高效率金屬氧化物光導體約一至五個數量級。
    利用功率相依之光電導量測求得載子活期,從奈米線其歸一化增益與載子活期分別敏感於光強的關係,確認長的載子活期為主要導致高歸一化增益值的因素。同時驚訝地發現包含二氧化錫,二氧化鈦,三氧化鎢這類具有高光電導效率之金屬氧化物奈米線其量子效率只有1%左右甚至是遠小於1%,這數值小於傳統塊材或薄膜約一至三個數量級。為解釋此現象,於是藉由奈米線所存在的表面空乏區(surface depletion region, SDR)以及表面主導之光電導機制,來解析在奈米線中為何存在異常低的量子效率及其功率相依效應。除此之外,利用材料具有不同的本質特性如載子活期,載子濃度與介電常數等,進而解釋不同金屬氧化物奈米線當中本質光電導效率的差異。


    In this thesis, We report on the superior photoconduction (PC) efficiency and the dynamic study of the wide-bandgap single-crystalline tin dioxide (SnO2) nanowires (NWs). The photoconductive gain of the single-wire device can go up to 8x10^8 at a low bias of 3.0 V, which is the highest reported value to date for the single nanostructure photodetectors. Especially, the optimal normalized gain with the physical meaning of intrinsic PC efficiency of SnO2 NWs reaches 20 cm^2/V, which is over one to five orders of magnitude higher than the other highly efficient metal oxide semiconductor NWs such as ZnO, TiO2, and WO3.
    The time-resolved PC measurement shows that the carrier lifetime with sensitive power dependence is the dominant factor determining the PC efficiency for the superior NW group. In addition, the numerical analysis surprisingly indicates that the metal oxide NWs reveal extraordinarily low (effective) quantum efficiency in common, which is one to three orders of magnitude lower than the conventional films counterparts. The presence of a very narrow surface depletion region with only a few nanometers width for the generation of long-lifetime carrier is proposed to explain the abnormal quantum efficiency and its power dependence. The study provides new understanding to the difference of intrinsic PC efficiency and the nature of “surface photoconductivity” between the metal oxide semiconductor nanostructures.

    中文摘要I AbstractII 目錄III 圖目錄VI 表目錄VIII 第一章 緒論1 1.1 一維奈米結構金屬氧化物1 1.2 二氧化錫2 1.3 研究背景與動機3 1.4 奈米材料之特殊現象5 1.4.1 小尺寸效應5 1.4.2 表面效應5 1.4.3 量子尺寸效應6 第二章 樣品介紹8 第三章 實驗方法9 3.1 二氧化錫奈米線之形貌與結構特性檢測9 3.1.1 高解析度場發射掃描式電子顯微鏡(high resolution Field-emission scanning electron microscope, FESEM)9 3.1.2 X光繞射儀 (X-ray diffraction, XRD)11 3.1.3 穿透式電子顯微鏡 (transmission electron microscope, TEM)15 3.2 單根二氧化錫奈米線之元件製作17 3.2.1 元件基板製作17 3.2.2 奈米線分散18 3.2.3 奈米線電極製作18 3.3 奈米線之暗電導特性研究21 3.3.1 電流對電壓曲線量測(current-voltage measurement)21 3.4 奈米線之光電導特性研究21 3.4.1 功率相依之光電導量測(power-dependent photocurrent measurement)22 3.4.2 環境變化之光電導量測(ambience-dependent photocurrent measurement)22 3.4.3 溫度變化之光電導量測(temperature-dependent photocurrent measurement)23 3.4.4 壓力變化之光電導量測(pressure-dependent photocurrent measurement)23 第四章 結果與討論25 4.1 二氧化錫奈米線之結構特性分析25 4.1.1 二氧化錫奈米線之表面形貌25 4.1.2 二氧化錫奈米線之晶體結構25 4.2 單根二氧化錫奈米線之元件30 4.2.1 單根二氧化錫奈米線元件之製作30 4.2.2 單根二氧化錫奈米線電導率之計算30 4.3 氧氣敏化機制35 4.4 光電導增益之計算39 4.5 歸一化增益及量子效率之計算45 第五章 結論63 參考文獻64

    [1] H. Chen, L. Hu, X. Fang, L. Wu, “General fabrication of monolayer SnO2 nanonets for high-performance ultraviolet photodetectors”, Adv. Funct. Mater., Vol. 22, pp. 1229-1235 (2012).
    [2] J. M. Wu, C. H. Kuo, “Ultraviolet photodetectors made from SnO2 nanowires”, Thin Solid Films, Vol. 517, pp. 3870-3873 (2009).
    [3] H. J. Snaith, C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency”, Nano Lett., Vol. 10, pp. 1259-1265 (2010).
    [4] S. Choudhury, C. A. Betty, K. G. Girija, S. K. Kulshreshtha, “Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors”, Appl. Phys. Lett., Vol. 89, 071914 (3pp) (2006).
    [5] L. L. Fields, J. P. Zheng, Y. Chen, P. Xiong, “Room- temperature low-power hydrogen sensor based on a single tin dioxide nanobelt”, Appl. Phys. Lett., Vol. 88, 263102 (3pp) (2006).
    [6] K. G. Godinho, A. Walsh, G. W. Watson, “Energetic and electronic structure analysis of intrinsic defects in SnO2”, J. Phys. Chem. C, Vol. 113, pp. 439-448 (2009).
    [7] Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang, “Tin oxide nanowires, nanoribbons, and nanotubes”, J. Phys. Chem. B, Vol. 106, pp. 1274-1279 (2002).
    [8] J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, S. S. Xie, “Growth of SnO2 nanowires with uniform branched structures”, Solid State Communications, Vol. 130, pp. 89-94 (2004).
    [9] B. Wang, Y. H. Yang, C. X. Wang, G. W. Yang, “Nanostructures and self-catalyzed growth of SnO2”, J. Appl. Phys., Vol. 98, 073520 (5pp) (2005).
    [10] L. C. Tien, S. J. Pearton, D. P. Norton, F. Ren, “Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition”, Appl. Phys. A, Vol. 91, pp. 29-32 (2008).
    [11] A. I. Ivashchenko, Ia. I. Kerner, G. A. Kiosse, I. Yu. Maronchuk, “Dimensional effect on the electrical conductivity of polycrystalline SnO2 thin films”, Thin Solid Films, Vol. 303, pp. 292-294 (1997).
    [12] Y. J. Ma, F. Zhou, L. Lu, Z. Zhang, “Low-temperature transport properties of individual SnO2 nanowires”, Solid State Commun., Vol. 130, pp. 313-316 (2004).
    [13] L. A. Ma, Y. Ye, L. Q. Hu, K. L. Zheng, T. L. Guo, “Efficient field emission from patterned Al-doped SnO2 nanowires”, Physica E, Vol. 40, pp. 3127-3130 (2008).
    [14] E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, “Fully Transparent thin-film transistor devices based on SnO2 nanowires”, Nano Lett., Vol. 7, pp. 2463-2469 (2007).
    [15] P. Moriarty, “Nanostructured materials”, Rep. Prog. Phys., Vol. 64, pp. 297-381 (2001).
    [16] A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems” , Adv. Phys., Vol. 42, pp. 173-266 (1993).
    [17] X. M. Qian, S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications”, Chem. Soc. Rev., Vol. 37, pp. 912-920 (2008).
    [18] S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering” , Science, Vol. 275, pp. 1102-1106 (1997).
    [19] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, “ZnO nanowire UV photodetectors with high internal gain” , Nano Lett., Vol. 7, pp. 1003-1009 (2007).
    [20] L. Hu, J. Yan, M. Liao, L. Wu, X. Fang, “Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors”, Small, Vol. 7, pp. 1012-1017 (2011).
    [21] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, L. C. Chen, “High photocurrent gain in SnO2 nanowires”, Appl. Phys. Lett., Vol. 93, 112115 (3pp) (2008).
    [22] R. S. Chen, C. A. Chen, H. Y. Tsai, W. C. Wang, Y. S. Huang, “Ultrahigh efficient single-crystalline TiO2 nanorod photoconductors”, Appl. Phys. Lett., Vol. 100, 123108 (4pp) (2012).
    [23] R. S. Chen, C. A. Chen, H. Y. Tsai, W. C. Wang, Y. S. Huang, “Photoconduction properties in single-crystalline titanium dioxide nanorods with ultrahigh normalized gain”, J. Phys. Chem. C, Vol. 116, pp. 4267-4272 (2012).
    [24] K. Huang, Q. Zhang, F. Yang, D. He, “Ultraviolet photoconductance of a single hexagonal WO3 nanowire”, Nano Res., Vol. 3, pp. 281-287 (2010).
    [25] M. L. Lu, T. M. Weng, J. Y. Chen, Y. F. Chen, “Ultrahigh-gain single SnO2 nanowire photodetectors made with ferromagnetic nickel electrodes”, NPG Asia Materials, Vol. 4, 26 (6pp) (2012).
    [26] B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction”, Prentice Hall, New Jersey (2001).
    [27] C. Y. Nam, D. Tham, J. E. Fischer, “Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires”, Nano Lett., Vol. 5, pp. 2029-2033 (2005).
    [28] R. S. Chen, H. Y. Tsai, Y. S. Huang, Y. T. Chen, K. H. Chen, L. C. Chen, “Photoconduction efficiencies and dynamics in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: A comparison study”, Appl. Phys. Lett., Vol. 101, 113109 (4pp) (2012).
    [29] P. Bhattacharya, “Semiconductor optoelectronic devices”, Prentice-Hall, New Jersey, Chap. 8, pp. 346-351 (1997).
    [30] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., Vol. 79, pp. 7433-7473 (1996).
    [31] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, “Ultahigh photocurrent gain in m-axial GaN nanowires”, Appl. Phys. Lett., Vol. 91, 223106 (3pp) (2007).
    [32] J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J. R. Morante, S. Barth, S. Mathur, “Toward a systematic understanding of photodetectors based on individual metal oxide nanowires”, J. Phys. Chem. C, Vol. 112, pp. 14639-14644 (2008).
    [33] C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T. Andreu, J. R. Morante, “On the photoconduction properties of low resistivity TiO2 nanotubes”, Nanotechnology, Vol. 21, 445703(6pp) (2010).
    [34] F. Gonzalez-Posada, R. Songmuang, M. Den Hertog, E. Monroy, “ Room-temperature photodetection dynamics of single GaN nanowires”, Nano Lett., Vol. 12, pp. 172-176 (2012).
    [35] H. Y. Chen, R. S. Chen, N. K. Rajan, F. C. Chang, L. C. Chen, K. H. Chen, Y. J. Yang, M. A. Reed, “Size-dependent persistent photocurrent and surface band bending in m-axial GaN nanowires”, Phys. Rev. B, Vol. 84, 205443 (7pp) (2011).
    [36] C. Sun, N. Mathews, M. Zheng, C. H. Sow, L. H. Wong, S. G. Mhaisalkar, “Aligned tin oxide nanonets for high-performance transistors”, J. Phys. Chem. C, Vol. 114, pp. 1331-1336 (2010).
    [37] D. Kim, Y. K. Kim, S. C. Park, J. S. Ha, J. Huh, J. Na, G. T. Kim, “Photoconductance of aligned SnO2 nanowire field effect transistors”, Appl. Phys. Lett., Vol. 95, 043107 (3pp) (2009).
    [38] J. Sun, Q. Tang, A. Lu, X. Jiang, Q. Wan, “Individual SnO2 nanowire transistors fabricated by the gold microwire mask method”, Nanotechnology, Vol. 20, 255202 (4pp) (2009).
    [39] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep., Vol. 48, pp. 53-229 (2003).
    [40] M. Miyakawa, K. Ueda, H. Hosono, “Carrier generation in highly oriented WO3 films by proton or helium implantation”, J. Appl. Phys., Vol. 92, pp. 2017-2022 (2002).
    [41] J. M. Berak, M. J. Sienko, “Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals”, J. Solid State Chem., Vol. 2, pp. 109-133 (1970).
    [42] J. Goldberger, D. J. Sirbuly, M. Law, P. Yang, “ZnO nanowire transistors”, J. Phys. Chem. B, Vol. 109, pp. 9-14 (2005).
    [43] J. B. Baxter, C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy”, J. Phys. Chem. B, Vol. 110, pp. 25229-25239 (2006).
    [44] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property”, Appl. Phys. Lett., Vol. 85, pp. 5923-5925 (2004).
    [45] Z. Y. Zhang, C. H. Jin, X. L. Liang, Q. Chen, L. M. Peng, “Current-voltage characteristics and parameter retrieval of semiconducting nanowires”, Appl. Phys. Lett., Vol. 88, 073102 (3pp) (2006).
    [46] Z. Nabi, A. Kellou, S. Mecabih, A. Khalfi, N. Benosman, “Opto-electronic properties of rutile SnO2 and orthorhombic SnS and SnSe compounds”, Mater. Sci. Engineer. B, Vol. 98, pp. 104-115 (2003).
    [47] E. Kh. Shokr, M. M. Wakkad, H. M. A. Abd El-Ghanny, “Sb-doping effects on optical and electrical parameters of SnO2 films”, J. Phys. Chem. Solid, Vol. 61, pp. 75-85 (2000).
    [48] C. C. Ting, S. Y. Chen, D. M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films”, J. Appl. Phys., Vol. 88, pp. 4628-4633 (2000).
    [49] J. D. DeLoach, G. Scarel, C. R. Aita, “Correlation between titania film structure and near ultraviolet optical absorption”, J. Appl. Phys., Vol. 85, pp. 2377-2384 (1999).
    [50] M. G. Hutchins, O. Abu-Alkhair, M. M. El-Nahass, K. A. El-Hady, “Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films”, Mater. Chem. Phys., Vol. 98, pp. 401-405 (2006).
    [51] K. J. Patel, C. J. Panchal, V. A. Kheraj, M. S. Desai, “Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films”, Mater. Chem. Phys., Vol. 114, pp. 475-478 (2009).
    [52] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition”, J. Appl. Phys., Vol. 85, pp. 7884-7887 (1999).
    [53] P. L. Washington, H. C. Ong, J. Y. Dai, R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry”, Appl. Phys. Lett., Vol. 72, pp. 3261-3263 (1998).
    [54] B. Karunagaran, R. T. Kumar Rajendra, C. Viswanathan, D. Mangalaraj, Sa. K. Narayandass, G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry”, Cryst. Res. Technol., Vol. 38, pp. 773-778 (2003).
    [55] R. L. Hengehold, R. J. Almassy, F. L. Pedrotti, “Electron energy-loss and ultraviolet-reflectivity spectra of crystalline ZnO”, Phys. Rev. B, Vol. 1, pp. 4784-4791 (1970).
    [56] J. L. Freeouf, “Far-ultraviolet reflectance of II-VI compounds and correlation with the penn—phillips gap”, Phys. Rev. B, Vol. 7, pp. 3810-3830 (1973).
    [57] K. J. Button, C. G. Fonstad, W. Dreybrodt, “Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance”, Phys. Rev. B, Vol. 4, pp. 4539-4542 (1971).
    [58] C. Kormann, D. W. Bahnemann, M. R. Hoffmann, “Preparation and characterization of quantum-size titanium dioxide”, J. Phys. Chem., Vol. 92, pp. 5196-5201 (1988).
    [59] J. M. Berak, M. J. Sienko, “Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals”, J. Solid State Chem., Vol. 2, pp. 109-133 (1970).
    [60] L. E. Brus, “Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state”, J. Chem. Phys., Vol. 80, pp. 4403-4409 (1984).
    [61] E. Shanthi, A. Dutta, A. Banerjee, K. L. Chopra, “Electrical and optical properties of undoped and antimony‐doped tin oxide films”, J. Appl. Phys., Vol. 51, pp. 6243-6251 (1980).
    [62] M. Batzill, U. Diebold, “The surface and materials science of tin oxide”, Prog. Surf. Sci., Vol. 79, pp. 47-154 (2005).
    [63] S. M. Sze, “Semiconductor Devices: Physics and Technology, 2nd edition”, John Wiley & Son, New Jersey, (2002).
    [64] D. A. Neamen, “Semiconductor Physics and Devices: Basic Principles, 3rd edition”, McGraw-Hill, New York, Chap. 4, pp. 106-112; Chap. 7, pp. 241-246 (2003).
    [65] P. J. Hansen, V. Vaithyanathan, Y. Wu, T. Mates, S. Heikman, U. K. Mishra, R. A. York, D. G. Schlom, J. S. Speck, “Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN”, J. Vac. Sci. Technol. B, Vol. 23, pp. 499-506 (2005).
    [66] M. G. Hutchins, O. Abu-Alkhair, M. M. El-Nahass, K. A. El-Hady, “Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films”, Mater. Chem. Phys., Vol. 98, pp. 401-405 (2006).
    [67] J. S. E. M. Svensson, C. G. Granqvist, “Carrier mobilities at weakly inverted silicon surfaces”, Appl. Phys. Lett., Vol. 45, pp. 828-830 (1984).

    QR CODE