簡易檢索 / 詳目顯示

研究生: 豐心怡
Sylvia Faustine
論文名稱: 高成就者和低成就者在學習化學平衡時的心智模型和視覺注意力分佈
Investigating High and Low Achievers’ Mental Models and Visual Attention Distribution in Learning Chemical Equilibrium
指導教授: 陳素芬
Su-Fen Chen
王嘉瑜
Chia-Yu Wang
口試委員: 顏妙璇
Miao-Hsuan Yen
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 81
中文關鍵詞: 高、低成就者化學平衡心智模型多重表徵視覺注意力分佈
外文關鍵詞: chemical equilibrium, high and low achievers, mental model, multi-representation, visual attention distribution
相關次數: 點閱:809下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討高成就與低成就學習者在學習化學平衡時的心智模型和視覺注意力分佈。參與者包含39位大學與研究所學生(年齡介於20至27歲)。學習者進行一個包括巨觀、次微觀和符號化學表徵的數位多媒體學習活動,並於學習活動後由研究者引導學生放聲思考以探討學習者持有關於化學平衡概念的心智模式品質。活動前和實驗最末則進行一份化學平衡概念測驗來了解化學平衡的概念學習成效。本研究亦分析和比較高、低成就學習者於學習任務中的眼動資料,以釐清兩組在多重表徵影片學習過程中的視覺注意力分佈特徵。此研究旨在分析:(1)在利用多重表徵影片學習後,高、低成就學習者在化學平衡方面的概念知識是否有差異? (2)高、低成就學習者持有關於化學平衡的心智模型是否不同? (3)他們在視覺注意力分佈是否存在差異(包括總凝視持續時間以及相關關注區域間的轉移)? 並探討(4)心智模型品質與視覺注意力分佈之間的關聯。
研究結果顯示,包含多重表徵的多媒體學習活動提升了低成就學習者在化學平衡方面的概念。高、低成就學習者的心智模式主要集中在品質較低的第二和第三級。屬於這兩級的的學習者無法利用心智模式完整推論:溶液受熱時如何影響化學平衡,他們對於壓力的改變如何影響化學平衡也存在誤解,尤其當系統處在從未平衡達平衡的過程中,無法在三重表徵間轉換來解釋現象。此外,本研究亦發現低成就學習者對問題和符號表徵的凝視時間較長,顯示對任務和化學方程式的理解存在困難。高成就學習者則能有效分配視覺注意力,專注於正確答案和巨觀表徵,有助於建構他們的心智模型。我們也發現,高、低成就學習者在學習和解決問題時呈現相同的凝視轉換序列模式。但兩組學習者皆未將影片中的三重化學表徵和文字資訊與任務問題和選項連結起來。總體而言,研究凸顯了學習成就與視覺注意力分配的關聯,高成就者在建構心智模式的關鍵要素投入更多視覺注意力,而低成就者則投入其注意力在理解問題和理解符號表徵。


This study investigates mental models and visual attention distribution of high and low achievers in learning chemical equilibrium. Thirty-nine undergraduate and graduate students (20 – 27 years old) participated in this study. The research procedure began with a pre-test, learning activity with multimedia that consists of macroscopic, sub-microscopic, and symbolic representations, think-aloud protocol to realize their mental models, and a post-test in order to understanding students’ conceptual knowledge about chemical equilibrium. Eye-movement during the learning task was collected to clarify the characteristics of the high and low achievers’ visual attention distribution while learning from the multi-representation video. The present study aimed to analyze: (1) the differences between high and low achievers’ conceptual knowledge after learning with multi representation video in chemical equilibrium, (2) how the high and low achievers’ mental models differ in learning chemical equilibrium, (3) whether they have differences in their visual attention distribution (total fixation duration and transitions between relevant areas of interest), and (4) how mental model and visual attention distribution are associated with each other. The finding shows that multi-representation video improves low achievers’ conceptual knowledge in chemical equilibrium. The high and low achievers distributed mostly on the level 2 and level 3. They lacked of understanding in the sub-unit of temperature when the solution was heating. The participants also had misconceptions, particularly in the sub-concept of pressure. They could not explain further with the three chemical representations when the system is in intermediate stage. Low achievers exhibited longer fixations on the question and the symbolic representation, indicating difficulty in understanding the task and the chemical equation. High achievers distributed their visual attention effectively, focusing on the correct answer and macroscopic representation which constructed their mental model. However, they might not be able to integrate what they have learned in the video (the three chemical representations and textual information) with the task (question and the corresponding options). Overall, the study highlighted the impact of achievement levels on visual attention, with the high achievers dedicating more time to constructive elements and low achievers encountering issues with question understanding and symbolic representations.

Contents Abstract in Chinese I Abstract in English II Acknowledgement III List of Tables VI List of Figures VI CHAPTER 1 1 1.1 Research Background 1 1.2 Research Purpose 3 1.3 Research Questions 3 CHAPTER 2 4 2.1 Mental Model in Chemical Equilibrium 4 2.2 Eye Movement Measures 11 CHAPTER 3 14 3.1 Research Design and Variables 14 3.2 Participants 14 3.3 Procedure 15 3.4 Learning Materials 16 3.5 Instruments 27 3.5.1 Conceptual Knowledge 27 3.5.2 Mental Model 29 3.5.3 Eye Movement 29 3.5.4 Areas of interests (AOIs) for eye movement experiment 30 3.6 Data Analysis 31 3.7 Data Cleaning in Eye Tracking Experiment 31 CHAPTER 4 34 4.1 Comparison of high and low achievers’ conceptual knowledge 34 4.2 High and low achievers’ mental model for chemical equilibrium 37 4.3 High and low achievers’ visual attention distribution 45 4.3.1 Total Fixation Duration 46 4.3.2 Transition numbers between the areas of interest (AOIs) 48 4.4 Correlation analysis of visual attention behaviors with the level of mental model 49 CHAPTER 5 51 5.1 Discussion 51 5.2 Conclusion 52 5.3 Implication 53 5.4 Limitation of the study 54 REFERENCES 55 Appendix 1 62 Appendix 2 72

Akaygun, S. & Jones, L. L. (2013). Research-based design and development of a simulation of liquid-vapor equilibrium. Chemistry Education Research and Practice, 14, 324-344. DOI: 10.1039/C3Rp00002H
Akaygun, S. & Jones, L. L. (2014) Words or Pictures: A comparison of written and pictorial explanations of physical and chemical equilibria. International Journal of Science Education, 36(5), 783-807. DOI: 10.1080/09500693.2013.828361
Akın, F. N., & Uzuntiryaki-Kondakci, E. (2018). The nature of the interplay among components of pedagogical content knowledge in reaction rate and chemical equilibrium topics of novice and experienced chemistry teachers. Chemistry Education Research and Practice, 19(1), 80-105.
Alemdag, E., & Cagiltay, K. (2018). A systematic review of eye tracking research on multimedia learning. Computers & Education, 125, 413–428. https://doi.org/10.1016/j.compedu.2018.06.023
Arndt, J., Schüler, A., & Scheiter, K. (2015). Text–Picture integration: How delayed testing moderates recognition of pictorial information in multimedia learning. Applied Cognitive Psychology, 29(5), 702–712. https://doi.org/10.1002/acp.3154.
Aydeniz, M., & Dogan, A. (2016). Exploring the impact of argumentation on pre-service science teachers’ conceptual understanding of chemical equilibrium. Chemistry Education Research and Practice, 17(1), 111–119.
Baluyut, J. Y.; Holme, T. A. (2019). Eye tracking student strategies for solving stoichiometry problems involving particulate nature of matter diagrams. Chemistry Teacher International, 1(1), 783−795.
Blinnikova, I. & Ishmuratova, A. Y. (2020). How do experts and novices work with conceptual schemes. The European Proceedings of Social and Behavioral Sciences, https://doi.org/10.15405/epsbs.2020.11.02.14
Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20(2), 155–166. https://doi.org/10.1016/j.learninstruc.2009.02.014
Chen, H. C., Lai, H. D., & Chiu, F. C. (2010). Eye tracking technology for learning and education. Journal of Research in Education Sciences, 55(4), 39-68.
Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., Linenweber, M. R., Petersen, S. E., Raichle, M. E., Van Essen, D. C., & Shulman, G. L. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773. https://doi.org/10.1016/s0896-6273(00)80593-0
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. https://doi.org/10.1177/001316446002000104
Fungisisai, C., Kenneth, M. N., Charles C., & Joyce S. (2018): Exploring the Mediation of Learning of Chemical Equilibrium to High-achieving Students in a Selected Senior Secondary School in Namibia. African Journal of Research in Mathematics, Science and Technology Education. DOI: 10.1080/18117295.2018.1528031
Garnett, J. P., Garnett., & Hackling, M.W. (1995). Students’ alternative conceptions in chemistry: a review of research and implications for teaching and learning. Studies in Science Education, 25(1), 69-96. DOI: 10.1080/03057269508560050
Gilbert, J. K. & Treagust, D. F. (2009). Introduction: Macro, Submicro and Symbolic Representations and the Relationship between Them: Key Models in Chemical Education. In Multiple Representations in Chemical Education; Gilbert, J. K., Treagust, D. F., Eds.; Springer: Berlin, Germany, Vol. 4, pp 1−8.
Gkitzia, V., Salta, K. & Tzougraki, C. (2011). Development and Application of Suitable Criteria for the Evaluation of Chemical Representations in School Textbooks. Chemistry Education Research and Practice, 12 (1), 5−14.
Gkitzia, V., Salta, K., & Tzougraki, C. (2020). Students’ competence in translating between different types of chemical representations. Chemistry Education Research and Practice, 21(1), 307-330.
Glaser, M. & Schwan, S. (2015). Explaining pictures: How verbal cues influence processing of pictorial learning material. Journal of Educational Psychology, 107(4), 1006–1018. https://doi.org/10.1037/edu0000044
Greca, M. I. & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11.
Gulacar, O., Tan, A., Cox, C. T., Bloomquist, J., Jimmy, O., & Cao, N. (2019). Analyzing characteristics of experts in the context of stoichiometric problem-solving. Education Sciences, 9(3), 219-230. https://doi.org/10.3390/educsci9030219
Hackling, M. W., & Garnett, P.J. (1985). Misconceptions of chemical equilibrium. European Journal of Science Education, 7(2), 205-214.
Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32, 717–742. https://doi.org/10.1006/jmla.1993.1036.
Holmqvist, K., Andrà, C., Lindström, P., Arzarello, F., Ferrara, F., Robutti, O., & Sabena, C. (2011). A method for quantifying focused versus overview behavior in AOI sequences. Behavior Research Methods, 43(4), 987-998. https://doi.org/10.3758/s13428-011-0104-x
Hyönä, J. (2010). The use of eye movements in the study of multimedia learning, Learning Instruct., 20(2), 172–176. https://doi.org/10.1016/j.learninstruc.2009.02.013.
Jarodzka, H., Scheiter, K., Gerjets, P. & Van Gog., T. (2010). In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning Instruction, 20, 146–154.
Jian, Y.-C. (2017). Eye-movement patterns and reader characteristics of students with good and poor performance when reading scientific text with diagrams. Reading and Writing: An Interdisciplinary Journal, 30(7), 1447–1472. https://doi.org/10.1007/s11145-017-9732-6.
Jian, Y.-C., Su, J.-H., & Hsiao, Y.-R. (2019). Differentiated processing strategies for science reading among sixth-grade students: Exploration of eye movements using cluster analysis. Computers & Education, 142, https://doi.org/10.1016/j.compedu.2019.103652
Jian, Y.-C. (2022) Using an eye tracker to examine the effect of prior knowledge on reading processes while reading a printed scientific text with multiple representations, International Journal of Science Education, 44(8), 1209-1229, DOI:10.1080/09500693.2022.2072013
Johnson-Laird, P. N. (1983). Mental Models. Towards a Cognitive Science of Language, Inference and Consciousness. Cambridge, UK: Cambridge University Press.
Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
Justi, R., & Gilbert, J. (2002). Models and modelling in chemical education. In Chemical education: Towards research-based practice (pp. 47-68): Springer
Kaya, E. (2013). Argumentation practices in classroom: Pre-service teachers’ conceptual understanding of chemical equilibrium. International Journal of Science Education, 35(7), 1139–1158.
Kousathana, M., & Tsaparlis, G. (2002). Students’ errors in solving numerical chemical equilibrium problems. Chemistry Education Research and Practice, 3(1), 5-17.
Kozma, R. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. Journal of The Learning Sciences, 9, 105-143.
Lai, M-L et al. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90–115. 10.1016/j.edurev.2013.10.001.
Liu, Han-Chin. (2017). Investigating the Impact of Cognitive Style on Multimedia Learners’ Understanding and Visual Search Patterns: An Eye-Tracking Approach. Journal of Educational Computing Research, 0(0), 1-16. DOI: 10.1177/0735633117697020
Lowe, R. & Boucheix, J-M. (2008). Learning from Animated Diagrams: How Are Mental Models Built? Diagrammatic Representation and Inference, 5th International Conference, Herrsching, Germany, September 19-21, 266-281. DOI: 10.1007/978-3-540-87730-1_25.
Martinez, B.L., Sweeder, R.D., VandenPlas, J.R., & Herrington, D.G. (2021). Improving conceptual understanding of gas behavior through the use of screencasts and simulations. International Journal of STEM Education. 8(5). doi.org/10.1186/s40594-020-00261-0
Mavhunga, E., & Rollnick, M. (2013). Improving PCK of chemical equilibrium in pre-service teachers. African Journal of Research in Mathematics, Science and Technology Education, 17(1–2), 113–125.
Mayer, R.E. (1996). Learning strategies for making sense out of expository text: The SOI model for guiding three cognitive processes in knowledge construction. Educational Psychology Review, 8, 357–371. https://doi.org/10.1007/BF01463939
Mayer, R. E. (2005). Cognitive Theory of Multimedia Learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). Cambridge University Press. https://doi.org/10.1017/CBO9780511816819.004
Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.). The Cambridge handbook of multimedia learning (pp. 43–71). New York, NY: Cambridge University Press.
Özmen, H. (2008). Determination of students’ alternative conceptions about chemical equilibrium: A review of research and the case of Turkey. Chemistry Education Research & Practice, 9(3), 225-223.
Pande, P., Chandrasekharan, S. (2022). Expertise as Sensorimotor Tuning: Perceptual Navigation Patterns Mark Representational Competence in Science. Research Science Education, 52, 725–747. https://doi.org/10.1007/s11165-020-09981-3
Park, B., Korbach, A., & Brünken, R. (2015b). Do learner characteristics moderate the seductive-details-effect? A cognitive-load-study using eye-tracking. Educational Technology & Society, 18(4), 24–36.
Pedrosa, M. A., & Dias, M. H. (2000). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions. Chemistry Education Research & Practice, 1(2), 227-236.
Praisri, A. & Faikhamta, C. (2020). Enhancing students’ mental models of chemical equilibrium through argumentation within model-based learning. International Journal of Learning, Teaching, and Educational Research, 19(7), 121-142.
Prokša, M., Drozdíková,A. & Haláková,Z. (2018).Learners’ Understanding of Chemical Equilibrium at Submicroscopic, Macroscopic and Symbolic Levels. Chemistry-Didactics Ecology Metrology, 23 (1-2), 97-111. https://doi.org/10.1515/cdem-2018-0006
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422.
Scheiter, K., & Eitel, A. (2017). The use of eye tracking as a research and instructional tool in multimedia learning. In C. Was, F. Sansost, & B. Morris (Eds.). Eye-tracking technology applications in educational research (pp. 143–165). Hershey PA, USA: Information Science Reference.
Schnotz, W., Ludewig, U., Ullrich, M., Horz, H., McElvany, N., & Baumert, J. (2014). Strategy shifts during learning from texts and pictures. Journal of Educational Psychology, 106(4), 974–989.
Schwedler, S., & Kaldewey, M. (2020). Linking the submicroscopic and symbolic level in physical chemistry: how voluntary simulation-based learning activities foster first-year university students’ conceptual understanding. Chemistry Education Research & Practice, 21(4), 1132-1147. https://doi.org/10.1039/C9RP00211A
Stevens, K., Gerber, D., & Hendra, R. (2010). Transformational learning through prior learning assessment. Adult Education Quarterly, 60(4), 377-404. 10.1177/0741713609358451.
Stieff, M., Hegarty, M., & Deslongchamps, G. (2011). Identifying representational competence with multi-representational displays. Cognition and Instruction, 29, 123-145. 10.1080/07370008.2010.507318.
Sweeder, R., Herrington, D., & Vandenplas, J. (2019). Supporting Students’ Conceptual Understanding of Kinetics Using Screencasts and Simulations Outside of the Classroom. Chemistry Education Research & Practice, 20. 10.1039/C9RP00008A.
Taber, K. S. (2013a). Three levels of chemistry educational research. Chemistry Education Research & Practice, 14(2), 151-155.
Taber, K. S. (2013b). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156-168. doi:10.1039/C3RP00012E
Tsai, M. J. Hou, H. T., Lai, M. L., Liu, W. Y. & Yang, F. Y. (2011). Visual attention for solving multiple-choice science problem: An eye-tracking analysis. Computers & Education, 58, 375–385.
Tsai, M-J., Wu, A-H., & Chen, Y. (2018). Static and dynamic seductive illustration effects on text‐and‐graphic learning processes, perceptions and outcomes: Evidence from eye‐tracking. Applied Cognitive Psychology. 10.1002/acp.3514.
van der Meij, H., & Bӧckmann, L. (2021). Effects of embedded questions in recorded lectures. Journal of Computing in Higher Education, 33, 235-254. https://doi.org/10.1007/s12528-020-09263-x
Voska, K. W., & Heikinnen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160-176.
Wu, C-J. & Liu, C-Y. (2021). Eye-movement study of high- and low-prior knowledge students’ scientific argumentations with multiple representations. Physical Review Physics Education Research, 17(1), 010125(16). DOI: 10.1103/PhysRevPhysEducRes.17.010125.
Yang, F-Y. (2017). Examining the reasoning of conflicting science information from the information processing perspective—an eye movement analysis. Journal of Research in Science Teaching, 54(10), 1347-1372. DOI10.1002/tea.21408

無法下載圖示 全文公開日期 2025/08/30 (校內網路)
全文公開日期 2025/08/30 (校外網路)
全文公開日期 2025/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE